NUFACT BLACKSBURG, VIRGINIA - AUGUST 12-18, 2018

The 20th International Workshop on Neutrinos from Accelerators

The ESSvSB Target and Horn Studies and Future developments

M. Dracos on behalf of ESSvSB Collaboration

IPHC-IN2P3/CNRS Strasbourg

- **Title of Proposal**: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
- Duration: 4 years
- Total cost: 4.7 M€
- Requested budget: 3 M€
- 15 participating institutes from
 11 European countries including CERN and ESS
- 6 Work Packages

- Title of Proposal: Discovery and measurement of leptonic CP violation using an intensive neutrino Super Beam generated with the exceptionally powerful ESS linear accelerator
- **Duration: 4 years**
- Total cost: 4.7 M€
- **Requested budget: 3 M€**

From Eurov to ESSvSB

Parameter	SPL	ESS
Power (MW)	4	5
E _{p+} (GeV)	4.5	2, 2.5
Baseline (km)	130	365, 540
Target	Packed-bed	Packed-bed
Target length (cm)	78	53-78
Target radii (cm)	1.5	1.5
Horn	Forward closed	Forward closed
Horn current (kA)	350 @ 12.5 Hz	350 @ 14 Hz
# of horns/targets	4	4
Tunnel length (m)	25	15-25
Tunnel radii (m)	2	2
Exposure (years)	2v + 8 anti-v	2v + 8 anti-v

- Can we conceive a neutrino beam based on a multi-MW proton beam ?
- At the start of EUROv, no proven solution for the target and collector was proposed for this facility !
- · Can we design a target for a multi-MW proton beam ?
- Can we do it with a reliable design without compromising the physics reach ?
- · Target
 - · 300-1000 J/cm³/pulse
 - Severe problems from: sudden heating, stress, activation
 - Solid versus liquid targets
 - · cooling
- Horn
 - horn+reflector integration
 - pulser (up to 600 kA)
- Safety

Lifetime (supposed to run for 10 years)

13/08/2018

ESSvSB Target Station Concept

WP4 Investigations:

- Optimize the Hadron Collector
 - Target Technology
 - Power 1.25 1.6 MW
 - Potential heat removal rates at the hundreds of kW level
 - Helium cooling
 - Separated from the Horn

Focusing System

- Accommodate the 5 MW power scale
- Solid target integrated into the inner conductor : very good physics results but high energy deposition and stresses on the conductors
- Best compromise between physics and reliability

Target Station Facility

- Supporting structure for focusing system
- Shielding, Beam Dump
- Power Supply Station, Cooling,...
- Safety Aspect

Horn

Four Horn System

ESSvSB Target Station Concept

13/08/2018

P. Sievers' proposal of a granular target at CERN (2001)

COOLING MEDIUM: water or gas helium

Concept of target integration inside a magnetic horn

13/08/2018

13/08/2018

Target Concept

Several proton beam pulse structure are under investigation:

Packed Bed Target

Target: 3 mm diameter titanium spheres

Proton Beam : 4.5 GeV, 1MW (SPL - Parameters) **Beam width** : 4 mm

Target geometry radius/Length : 12 mm / 780 mm

Coolant : Helium at 10 bar pressure

Titanium temperature contours :

Temperature < 673° C (Melting temp =1668° C)

=> Concept will be upgraded for ESSvSB

Packed-bed target, studied at RAL within the EUROnu project (arXiv: 1212.0732)

Packed Bed Target

Some of the results obtained by C.Khoroua and E.Noah at ESS

Work under investigation :

- $\circ~$ Detailed analysis of the vibrations of the spheres
- Thermal stress calculations in the spheres
- Fatigue life estimate of the spheres
- Numerical study of the dynamic and thermal phenomena in the pebble bed target
- Target cooling issues
- Environmental effects (radiation damage, cavitation issues, etc.)

Design	: MiniBooNe-Like Horn	
Material	: Aluminum Al T 6061 – T6	
Geometry	: Length 2.4 m – Diameter 1.2 m	
Inner/Outer conductor thickness : 3 mm /10 mm		
Peak Current	: 350 kA	

=> Concept will be upgraded for ESSvSB

Horn major design issues

- Dynamic stress brought about by short-duration pulses.
- Assessment of the longevity (fatigue life) of the horn and its components.
- The performance of the cooling system.

13/08/2018

Water Cooling System

Cooling system

- Planar and/or elliptical water jets
- 30 jets/horn, 5 systems of 6-jets longitudinally distributed every 60^o
- Flow rate between 60-120I/min, h cooling coefficient 1-7 kW/(m²K)
- Longitudinal repartition of the jets follows the energy density deposition
- ► { h_{corner} , h_{horn} , h_{inner} , h_{convex} }= {3.8, 1, 6.5, 0.1} kW/(m²K) for T_{AI-max} = 60 °C

S Feedback from previous experiments

Some practical issues regarding horn design, CNGS horn

(courtesy Ans Pardons, CERN)

- 2006: Water Outlet Leak
 - Badly designed brazed & machined ceramic assembly
 - All brazed ceramics in horns replaced

- 2007: broken Stripline cable
 - Insufficiently restrained & brazingweakened cables
 - Replaced with restrained & (more) rigid solution of Ag-plated copper plates

Work under investigation :

- \circ Optimization of the horn geometry for the ESSvSB conditions.
- Dynamic analysis of the horn with auxiliary equipment (e.g. vibration transmission from the horn to cooling system and ways of mitigating the problem).
- The analysis of the horn cooling system (possibilities of using heat exchange results for assessing the performance of the cooling system; tuning the model to the existing experimental results).
- Fatigue life analysis of the horn with auxiliary equipment.

Target Station Concept

ALARA Approach:

Anticipate and reduce individual and collective exposition to radiations.

Dosimetry Objectives Vessel Lid **ALARA** Approach Dosimetry Analyse Performances

Execution

Previous Studies

As Low As Reasonably Achievable

Feedback from previous experiments is crucial

Building "rooms"

- Open Top geometry for the Target Station Room, Decay Tunnel, Beam Dump
- Hot Cell (Repair Target Station elements)
- Morgue (Store radioactive wastes)
- Horn Power Supply Room, Power supply outside of the main building?

=> Energy Deposition and Dose Rate Estimation with FLUKA Simulation

Target Station Concept

13/08/2018

Target Station Concept

Target Station Energy Deposition ESSvSB 1.6 MW / EUROnu 1.3 MW

IPAC'17 Proceedings: E. Bouquerel et al, "Energy deposition and activation studies of the ESSnuSB Horn Station", MOPIK029

Beam Dump

13/08/2018

Several configurations have been tested to optimize heat exchange:

Case 1 Solid Graphite

Case 2: Graphite blocks, no heat transfer across gaps

Case 3: Graphite blocks, helium conduction across gaps

- Best case scenario, but
 impossible in practice
- Results agree with hand calculation
- Worst case scenario for heat transfer
- 0.4m x 0.4m extruded sections – similar to T2K
- Assumed 2mm helium gaps – conservative
- Assumed no convection – conservative

From Euronu

Material Composition

Chemical composition of Material:

Target => Ti(100%)

Horn => Anticorodal 110 alloy Al (95.5%), Si(1,3%), Mg(1,2%), Cr(0.2%), Mn(1%), Fe (0.5%), Zn(0.2%), Cu(0.1%)

Decay Pipe => Steel P355NH Fe(96.8%), Mn(1.65%), Si(0.5%), Cr(0.3%), Ni(0.3%), C(0.2%)

Tunnel => Concrete

O(52.9%), Si(33.7%), Ca(4.4%), Al(3,49%), Na(1,6%), Fe(1.4%), K(1,3%), H(1%), Mn(0.2%), C(0.01%)

Surrounding Environment => Molasse

O(49%), Si(20%), Ca,(9.7%), Al(6.4%), C(5%), Fe(3.9%), Mg(3.2%), K(1%), Na(0.5%), Mn(0.1%)

Four horn station layout

Material Activation

13/08/2018

Concrete Activation

All the radionuclide's created, especially ²²Na and tritium, could represent a hazard by contaminating the ground water.

13/08/2018

Power Supply Station

Horn Power Supply and Strip lines

- current of 44kA max at F=50HZ
- For each HORN : current of 350kA max at 12.5HZ
- energy recuperation (>90%) and reinjection
- lifetime > 13 Bcycles (10 years, 200 days/year)

13/08/2018

Pulse Power Supply 44kA

Pulse Power Supply 44kA

Horn Power Supply and Strip lines

P. Poussot et al, "Study of the pulse power supply unit for the four-horn system of the CERN to Fréjus neutrino super beam", JINST 8 (2013) T07006

ESSIS

Horn Power Supply and Strip lines

13/08/2018

Other possible physics

CSS Muons at the level of the beam dump

- Neutrino Factory,
- Muon Collider.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

2 2.2

0.1

- ESSvSB project has received funding from the European Union Horizon 2020 research and innovation program under grant agreement No 777419 (<u>http://essnusb.eu/site/</u>).
- European Spallation Source is under construction and will provide a 5 MW proton beam power by 2023.
- ESSvSB Project offers a good opportunity to study CP violation in leptonic sector with an improved sensitivity thanks to the 2nd Oscillation maximum.
- Technical constraints of a Super Beam with a Multi Mega Watt proton driver have been studied in the EUROnu WP2 framework and will be upgraded for ESSvSB
- ESSvSB can also be used as a platform to develop future muon beam experiments.