Physics potential of the ESS_VSB facility

Salvador Rosauro-Alcaraz

in collab. with E. Fernández-Martínez & M. Blennow

UAM and IFT UAM-CSIC

NuFACT, August 2018

3 N 4

NuFACT, August 2018

1/14

Salvador Rosauro-Alcaraz (UAM/IFT) Physics potential of the ESS₂SB facility NuFACT, August 2018

- E

2/14

Introduction

In the SM neutrinos \rightarrow massless Neutrino oscillations \rightarrow Physics BSM

Flavour puzzle

- Why are fermion masses so different in the SM?
- Mixing for quarks very different from leptons

Baryon asymmetry

- Not enough CP violation in quark sector
- ν's could be the answer through leptogenesis

What do we know?

$$\boldsymbol{U} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \operatorname{diag}(1, e^{i\alpha_{21}}, e^{i\alpha_{31}})$$

Best fit values (1σ)

• $\Delta m_{21}^2 = 7.50^{+0.19}_{-0.17} \cdot 10^{-5} \text{eV}^2$

•
$$\sin^2 \theta_{12} = 0.306^{+0.012}_{-0.012}$$

•
$$|\Delta m_{31}^2| = 2.524^{+0.039}_{-0.040} \cdot 10^{-3} \text{eV}^2$$

•
$$\sin^2 \theta_{23} = 0.441^{+0.027}_{-0.021}$$

• $\sin^2 \theta_{13} = 0.02166^{+0.00075}_{-0.0075}$

I. Esteban, M. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, T. Schwtetz hep-ph/1611.01514

Still unknown

- $\delta \rightarrow$ Leptonic CP violation
- $Sign(\Delta m_{31}^2)$
- Octant of θ₂₃
- ν's Dirac or Majorana?
 Not testable with ν oscillations

.

The interference term

In matter

A. Cervera et al. hep-ph/0002108

S

< A

$$P_{\mu \to e}^{\pm} = s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{atm}}{\tilde{B}_{\mp}}\right)^{2} \sin^{2} \left(\frac{\tilde{B}_{\mp}L}{2}\right) Atmospheric + c_{23}^{2} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{sol}}{A}\right)^{2} \sin^{2} \left(\frac{AL}{2}\right) Solar Interference + J \frac{\Delta_{sol}}{A} \frac{\Delta_{atm}}{\tilde{B}_{\mp}} \sin \left(\frac{AL}{2}\right) \sin \left(\frac{\tilde{B}_{\mp}L}{2}\right) \cos \left(\pm \delta - \frac{\Delta_{atm}L}{2}\right)$$

$$J = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \quad \Delta_{atm} = \frac{\Delta m_{31}^2}{2E} \quad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$$
$$A = \sqrt{2}G_F n_e \quad \tilde{B}_{\mp} = |A \mp \Delta_{atm}|$$

S

CP violation

Impact of large θ_{13}

First maximum:

- Large statistics
- Systematic error as bottleneck

Second maximum:

- Systematic error not a problem
- Statistics as bottleneck

Salvador Rosauro-Alcaraz (UAM/IFT) Physics potential of the ESS_VSB facility

NuFACT, August 2018 6 / 14

The ESS ν SB

E. Baussan et al. hep-ex/1309.7022

- $\bullet\,$ Modification of the ESS linac to produce neutrinos 14Hz \rightarrow 28Hz
- 5 MW at 2.5GeV proton beam
- MEMPHYS-like WC detector
 - 500 kt fiducial volume
 - Best locations at 540 and 360 km

Simulation framework

P. Huber et al. hep-ph/0701187

- Implemented in GLoBES
- Simulation with a ND
- 2.5 GeV proton beam

P. Coloma et al. hep-ph/1209.5973

Systematic errors

		SB	
Systematics	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%
(incl. near-far extrap.)			
Flux error signal ν	5%	7.5%	10%
Flux error background ν	10%	15%	20%
Flux error signal $\bar{\nu}$	10%	15%	20%
Flux error background $\bar{\nu}$	20%	30%	40%
Background uncertainty	5%	7.5%	10%
Cross secs \times eff. QE [†]	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^*$	3.5%	11%	—
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%	-
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	-
Matter density	1%	2%	5%

Sensitivity to mass hierarchy

38 N

Sensitivity to CP violation

Comparison between

- "Default" systematics
- "Optimistic" systematics
- *T2HK* O(3%) systematics with 374 kt (reduced volume and improved photocoverage)
 K. Abe et al. 1805.04163

Physics potential

Sensitivity to CP violation

Impact of ν mode running time

- Up to now studies with 2+8 years
- Preference for 5+5 years

Sensitivity to CP violation

Impact of each systematic error

For different values of the systematics

- 2×Cons.
- Cons.
- Def.
- Opt.
- Opt./2

		SB	
Systematics	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%
(incl. near-far extrap.)			
Flux error signal ν	5%	7.5%	10%
Flux error background ν	10%	15%	20%
Flux error signal $\bar{\nu}$	10%	15%	20%
Flux error background $\bar{\nu}$	20%	30%	40%
Background uncertainty	5%	7.5%	10%
Cross secs \times eff. QE^{\dagger}	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \text{ QE}^{\star}$	3.5%	11%	-
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%	-
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	-
Matter density	1%	2%	5%

B → < B

Physics potential

Sensitivity to CP violation

Most important systematics

- ν background
- Cross section uncertainties

Salvador Rosauro-Alcaraz (UAM/IFT) Physics potential of the ESS_VSB facility NuFACT, August 2018

Conclusions

• ESS ν SB

Complementarity with DUNE. Lower energy ν .

• Mass hierarchy

It could exclude the wrong hierarchy at $\sim 3\sigma$

- ν mode running time
 Better a symmetric 5+5 setup
- Baseline
 - L < 300km systematics relevant \rightarrow RV/IP better as O(3%) sys.
 - $L_{optimal} \sim 400 km$ for 5 + 5 yrs running
- Impact of systematic errors
 - ν background and cross section

L = 540 km and 5 + 5 yrs

CP violation could be discovered above 5σ for a 51.2 - 59.2% of values of δ depending on the systematics