

Funded by the Horizon 2020 Framework Programme of the European Union

The ESSnuSB project: linac upgrade and accumulator design

Ye Zou, Uppsala University

XIX International Workshop on Neutrino Telescopes 18 - 26 February, 2021

European Spallation Source

First beam at reduced energy and power in 2023
Full power 5 MW and energy 2 GeV in 2025

XIX International Workshop on Neutrino Telescopes

ESS neutrino Super Beam

Motivation

Due to the uniquely high power of the ESS linac, we will have the opportunity to measure with high precision the neutrino CP-violating angle at the 2nd oscillation maximum

How to add neutrino facility?

- The neutron program must not be affected
- Linac modifications: double the rate (14 Hz → 28 Hz), from 4% duty cycle to 8%, average beam power from 5 MW to 10 MW
- Accumulator needed to compress the 3 ms proton pulses to ~1.5 μs, affordable by the magnetic horn and needed for physics performance
- Neutrino target station (See more details in Loris D'Alessi's talk)
- Underground detector (See more details in Mariyan Bogomilov's talk)

ESSnuSB public report at <u>https://essnusb.eu/DocDB/public/ShowDocument?docid=706</u> ESSnuSB video film available at <u>https://youtu.be/PwzNzLQh-Dw</u>

ESS proton linac and its upgrade for ESSnuSB

ESS linac status

UPPSALA UNIVERSITET

RFQ installed in the tunnel

MEBT installed in the tunnel

DTL assembled on site

Spoke CM tested in FREIA

XIX International Workshop on Neutrino Telescopes

Upgrade for ESSnuSB (5 MW -> 10 MW)

H⁻ source added

Beam losses are the main concern for the linac upgrade.

Modulator capacitor upgrade

Accumulator design

XIX International Workshop on Neutrino Telescopes

Transfer line and switchyard

Transfer line from Linac to Accumulator

ESSnuSB Layout

Blackbody Radiation~0.4 W/mIntra-beam stripping~0.3 W/mLorentz stripping~0.29 W/m

Beam losses can be controlled both in the transfer lines and switchyard.

Transfer line from accumulator to switchyard

XIX International Workshop on Neutrino Telescopes

Conclusions

- Beam loss, the main concern in the linac upgrade, can be controlled in the linac.
- Accumulator ring is designed and optimized, which can compress beam pulse for three orders of magnitude with very small space charge effect.
- Two transfer lines are designed and optimized, which can deliver beam pulses with very tiny beam losses.
- Switchyard is well designed, which can deliver pulse to each of the four targets almost without beam losses.