ESS AND NEUTRINOS, AN EXCITING TIME AHEAD

Beam physics section leader / Accelerator Division / ESS ESSnuSB Linac upgrade WP leader

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

Mamad Eshraqi for ESSnuSB

2021 April 21

M. Eshraqi

ESS Upgrade Feasibility

ACCELERATE is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 731112

2

2021 April 21

M. Eshraqi

ESS Upgrade Feasibility

FINANCING: CASH AND IN-KIND

2021 April 21

INTERNATIONAL COLLABORATION

- Aarhus University
- Atomki-Institute for Nuclear Research
- Agder University
- Bergen University
- CEA Saclay, Paris
- Centre for Energy Research, Budapest
- Centre for Nuclear Research, Poland, (NCBJ)
- CERN, Geneva
- CNR, Rome
- CNRS Orsay, Paris
- Cockcroft Institute, Daresbury
- DESY, Hamburg
- Delft University of Technology
- Edinburgh University
- Elettra–SincrotroneTrieste
- ESSBilbao
- Forschungszentrum Jülich
- Helmholtz-Zentrum Geesthacht
- Huddersfield University
- IFJ PAN, Krakow
- INFN, Catania
- INFN, Legnaro
- INFN, Milan
- Institute for Energy Research (IFE)
- Institut Laue-Langevin (ILL)
- Rutherford-Appleton Laboratory, Oxford (ISIS)
- Kopenhagen University
- Laboratoire Léon Brilouin (LLB)
- Lodz University of Technology
- Lund University
- Nuclear Physics Institute of the ASCR
- Oslo University
- Paul Sherrer Institute
- 2021 April 21

- Roskilde University
- Tallinn Technical University
- Technical University of Chemnitz
- Technical University of Denmark
- Technical University Munich
- Science and Technology Facilities Council (STFC)
- University of Tartu
- Uppsala University
- WIGNER Research Centre for Physics
- Wroclaw University of technology
- Warsaw University of Technology
- Zurich University of Applied Sciences (ZHAW)

MAX IV; OUR BRIGHT NEIGHBOR!

ACCELERATE is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 731112

304 – DanMAX

PHOTONS VS. NEUTRONS

2021 April 21

M. Eshraqi

ESS Upgrade Feasibility

2021 April 21

M. Eshraqi

of neutron and X-ray tomography data, respectively. Courtesy of E.H. Lehmann [165]. Figure 2.17: Non-destructive imaging of an Indonesian dagger sheath, illustrating how neutrons mitigate the obscuring effects of the out metal cover on images of the inner wood parts. Top left: A photograph of the dagger and the sheath, which has an outer metal cover (containing silver) and an inner wooden struztures ToFundamental and near ticle rehysics hy) image. Bottom left and right: 3D renderings of neutron Sandparady Fonsibilitaphy data, respectively Counterfectively C

eutrons mitiga t: A photogra an inner wood ent: 3D renderin

PSI, TUM

BETTER DRUGS FROM DETAILED PROTEIN MAPS

 This enzyme transports CO2 and regulates blood pH.

• It is a major player in some cancers, glaucoma, obesity and high blood pressure.

Z. S. Fisher, et al. J. Am. Chem. Soc. 2012, 134, 36, 14726-14729

BETTER DRUGS FROM DETAILED PROTEIN MAPS

 This enzyme transports CO2 and regulates blood pH.

• It is a major player in some cancers, glaucoma, obesity and high blood pressure.

 Neutron crystallography pinpoints protons and waters, showing how the drug Acetazolamide binds.

Z. S. Fisher, et al. J. Am. Chem. Soc. 2012, 134, 36, 14726-14729

ALMOST ALL ESS IN ONE SLIDE

Key Linac parameters

Energy	2.0 GeV
Current	62.5 mA
Repetition rate	14 Hz
Pulse length	2.86 ms
Losses	< W/m
lons	р
Flexible/Upgradable design	
Minimize energy consumption	7

Controls

Control variables. ~1.6E6 PVs MPS and PSS EPICS7 μΤϹΑ.4

Target diameter	2.6 (0.45) m
Mass	II (3) tons
	36 sectors
Rev. freq.	~0.4 Hz
Expected lifetime	5 years
Cooling	He gas
Beam ports	42
Peak flux	~30-100 × ILL
Cold moderator	Liquid H ₂
	17 K
	30 mm
Thermal moderator	H_2O
	300 K
	30 mm

ACCELERATE is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 731112

PROGRESS AT ESS

2021 April 21

M. Eshraqi

ESS Upgrade Feasibility

ESS, ESS-Bilbao, CEA

ESSNUSB

Call/Activity: A H2020 EU Design Study (Call INFRADEV-01-2017) Title of Proposal: Discovery and measurement of leptonic CP violation usin intensive neutrino Super Beam generated with the exceptionally powerful ESS line accelerator **Proposal number:** 777419 Proposal acronym: ESSnuSB Funding scheme: RIA **Duration:** 4 years Total cost: 4.7 M€ **Requested budget:** 3 M€ **Participants:** 15 participating institutes from 11 European countries ind CERN and ESS 6 Work Packages Approved end of August 2017: 2018-2021 → Conceptual Design Report end of

ngan	N.	Proposer name	Country
ear	1	CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE	ED
Cal	'	CNRS	in in
	2	UPPSALA UNIVERSITET	SE
	3	KUNGLIGA TEKNISKA HOEGSKOLAN	SE
	4	EUROPEAN SPALLATION SOURCE ERIC	SE
	5	UNIVERSITY OF CUKUROVA	TR
	6	UNIVERSIDAD AUTONOMA DE MADRID	ES
	-	NATIONAL CENTER FOR SCIENTIFIC RESEARCH	-
	1	"DEMOKRITOS"	EL
	8	ISTITUTO NAZIONALE DI FISICA NUCLEARE	IT
	9	RUDER BOSKOVIC INSTITUTE	HR
iciuaing	10	SOFIISKI UNIVERSITET SVETI KLIMENT OHRIDSKI	BG
	11	LUNDS UNIVERSITET	SE
		AKADEMIA GORNICZO-HUTNICZA IM. STANISLAWA	
2021	12	STASZICA W KRAKOWIE	PL
	13	FUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH	CH
	14	UNIVERSITE DE GENEVE	CH
	15	UNIVERSITY OF DURHAM	UK
		Total:	U.V.

13

LUND TO GARPENBERG VIA ZINKGRUVAN

M. Eshraqi

ESS Upgrade Feasibility

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

CHAMELEONS OF PARTICLE PHYSICS

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

M. Eshraqi

ESS Upgrade Feasibility

TOP LEVEL PARAMETERS

Design Drivers: High average beam power 5 MW High peak beam power 125 MW High availability **>95** %

Key Linac parameters:

Energy	2.0 GeV
Current	62.5 mA
Repetition rate	l4 Hz
Pulse length	2.86 ms
Losses	<iw m<="" td=""></iw>
lons	р

Flexible/Upgradable design Minimize energy consumption

2021 April 21

ESSnuSB beam:	
Energy	2.5 GeV
Current	62 mA (50 mA)
Repetition rate	14 Hz (x 4)
Pulse length	<3.5 ms
Losses	<iw m<="" td=""></iw>
lons	H-

ESSNUSB LAYOUT

M. Eshraqi

Rasmus Johansson and Nick Gazis

H-TRANSPORT AND LOSSES

PULSING IN THE LINAC, RING AND TARGET

- Possibility of merging the two beams at 70 Hz (cases B and C).

- B field: 0.1 T
- Bending radius: 400 mm
 - pole gap: 100 mm
- A coil with 100 turns
 - ▶ Inductance: 17 mH
 - possible to switch at 70 Hz
- Power supply:
 - Current: 80 A
 - Voltage: I70 V

Håkan Danared, Björn Gålnander

MODULATOR

- Two different power upgrades for the modulators have been studied:
 - Using the SML modulators of ESS and upgrading the capacitor chargers
 - Using the SML modulators of ESS and adding pulse transformers for the H- beam

Scenario	Solution	Eta	Investme nt cost [M€]	Electricity cost per year [M€/y]	Increased system footprint [m²]	Total system height [m]	H ⁻ pulse rise time [μs]
Α	SML upgr.	0.82	3.4	4.6	0	3.1	< 120
В	SML upgr.	> 0.80	3.4	4.8	0	3.1	< 80
	SML + PT	> 0.80	26.3	4.8	< 2.5 x 1.5	2.4	60-120
С	SML upgr.	> 0.71	3.4	6.7	0	3.1	< 170
	SML + PT	> 0.72	26.6	l 6.5	< 2.5 x 1.5	2.4	50-120
Baseline	SML	0.82	N/A	7.30	N/A	2.6	N/A

Max Collins and Carlos Martins

ACCUMULATOR DESIGN

Main challenges

- Beam loss control due to very high beam power
- Space-charge tune shift due to very high beam intensity
- Instabilities (e-p instability)

• Main design requirements

- Ring circumference: ~ 400 m
- Injection turns: ~ 600
- Extraction gap: ~100 ns
- Total beam loss (I W/m): <10-4
- Collimation efficiency: >90%
- Space-charge tune shift: <0.1

• Lattice design

- Developed by Horst Schönauer at CERN
- Circumference: 384 m
- 4-fold symmetry
- 4 straight sections (SSI~SS4) and 4 arc sections (Arc)
- Fixed injection chicane and fast programmable bump for injection painting

BEAM INJECTION

Foil stripping and laser stripping

- Foil stripping: widely used in proton synchrotrons or accumulators, very challenging due to high power
- Laser stripping: a promising alternative method

Painting

- Mitigate space charge issue
- Mitigate foil temperature issue

Foil temperature issue mitigation

- Mismatch injection
- Splitting the foil along beam direction
- Moving injection point

Painting optimization

• Painting to quasi-uniform beam, with 100% emittance of 60 π mm mrad in both planes •Very small tune spread (~0.05) • Foil temperature under 2000 K

600

700

500

400

300

200

100

BEAM COLLIMATION

• Two-stage collimation system:

- A thin primary collimator to scatter beam halo particles
- followed by a set of secondary collimators at optimal locations to absorb the scattered particles

Materials:

- Primary: Tantalum
- Secondary: Tungsten or Copper

Thickness/length:

- Primary: 6 mm
- Secondary: I.5 m

• Collimator acceptance:

- Primary/Secondary: 70/120 π mm mrad
- Optimal phase advances between primary and secondary collimators to maximize interception efficiency
- Numerical simulations to evaluate the performance of the collimation system

Two-stage collimation system with 97% efficiency

BEAM EXTRACTION, RF AND SWITCHYARD

Beam extraction

- Single-turn extraction system is designed to extract the full beam in a single turn after accumulation
- Fast magnets (kickers) to extract the beam vertically out of the ring during the extraction gap of 100-130 ns
- Horizontal deflector (septum) to deflect the beam by 16.8 deg to the start of the extraction line

Challenges

- Loss-free extraction \Rightarrow optimize aperture sizes
- Rise-time of kickers \Rightarrow aperture size, B-field, technology

M. Eshraqi

ESS Upgrade Feasibility

RF cavity

- RF cavity to keep the extraction gap clean while keep energy spread small
- Barrier bucket is chosen due to its very small leakage risk and small energy spread (±0.15%)
- Aperture optimized to make rise-time requirement easier to reach

Switchyard

Switch and direct the beam pulses to the 4 horns

A. Alekou, I. Efthymiopoulos, Y. Zou, E. Bouquerel

TARGET STATION DESIGN

2021 April 21

M. Eshraqi

Eric Baussan

HADRONIC COLLECTOR

Packed Bed Target

- Power 1.25 1.6 MW
- Potential heat removal rates at the hundreds of kW level
- Helium cooling (10 bars)
- Separated from the horn

Focusing System

- 4-horn/target system to accommodate the MW power scale
- Solid target integrated into the inner conductor : very good physics results but high energy deposition and stresses on the conductors
- Best compromise between physics and reliability

Eric Baussan; and Packed-bed target, studied by RAL within the EUROnu project", Phys. Rev. ST Accel. Beams 17,031001 - arXiv: 1212.0732

ESSNUSB NEUTRINO FLUX

	Positive Pola	rity	Negative Polarity		
	N (1E10 1/m ²)	%	N (1E10 1/m²)	%	
Muon neutrino	583	98	23.9	6.55	
Muon anti neutrino	12.8	2.1	340	93.2	
Electron neutrino	1.93	0.3	0.08	0.02	
Electron anti neutrino	0.03	0.01	0.78	0.21	

M. Eshraqi

ESS Upgrade Feasibility

ACCELERATE is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 731112

Eric Baussan

DETECTORS

- I Megaton of ultra pure water as the far detector (400 olympic size swimming pools)
 - That is 20 times the volume of the super-Kamiokande
- 1000 meter deep underground (1232 m)
 - To decrease the noise and background from cosmic radiation

Eiffel Tower 318 m Empire State 381 m Taipei 101

Burj Khalifa 830 m

509 m

Super-Kamiokande Detector

SUMMARY

- The ESS project has seen good progress, with RFQ beam commissioning planned for early summer **ESSnuSB** received funding to study the feasibility of ESS linac upgrade from 5 MW to 10 MW to deliver 1E23 p.o.t/yr
- for neutrino oscillation studies

• Linac upgrade

- The ESS linac lattice is capable of accelerating and transporting the H- beam with minimal stripping losses, such that the total losses of p and H- remain within I W/m
- H-loss phenomena have been studied, and the transfer line to ring designed to respect the loss limits • The ESS's stacked multi-layer modulator has the capability to be upgraded for the ESSnuSB

Accumulator

- A ring with 4 fold symmetry, collimation and RF section is designed to accumulate the high charge beam Different injection paintings have been studied to manage the stripper foil heating and uniform charge distribution
- and a fast extraction system has been designed

• Target

- A target capable of receiving 4 x 1.6 MW, 2.5 GeV proton beam and a dedicated horn is designed • The power supply is designed to deliver high current short pulses (350 kA x 16 x 14 Hz) Near and far detectors, cavern, civil engineering, and infrastructure were not covered in this talk

M. Eshraqi

Acknowledgments:

Most of the content is provided by my colleagues within the ESSnuSB collaboration, only some of the names are mentioned in the slides.

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

ESSNUSB LOOKING FOR THE ANSWER

https://www.youtube.com/watch?v=PwzNzLQh-Dw

https://www.youtube.com/watch?v=qAnvftOnAlg ACCELERATE is funded by the European Union Framework Programme for Research and Innovation Horizon 2020, under grant agreement 731112

