EPS-HEP 2021

The ESS Neutrino Super-Beam Near Detector

(

¢

A. Burgman

Division for Nuclear Physics Lund University

2021.07.26

ESSnuSB

• 0

ESSnuSB

The ESS Neutrino Super-Beam

Objective

▷ Measure leptonic δ_{CP} at 2nd oscillation max.

Producing the neutrino beam

- \hookrightarrow ESS linac upgrade for dedicated *p*-beam
 - ▷ 5 MW, 2.5 GeV E_{kin} , 14 Hz repetition
- $\hookrightarrow \ Compress \ pulses \ to \ 1.1 \ \mu s$
- \hookrightarrow Produce π^{\pm} with *p*-beam on four Ti-targets
 - Sign-select with magnetic focusing horn
- \hookrightarrow Produce v-beam in 50 m decay tunnel
- \hookrightarrow Unoscillated beam at near detector (~ 250 m)
- → Oscillated beam at far detector (360 km or 540 km)

The Collaboration

- \sim 50 active researchers
- > 10 countries

ESSnuSB Near Detector

0.

Two-fold objective:

- \triangleright Measure ν_{μ} -flux: ~ 10⁷ events per run-year (200 d, 2.16 × 10²³ p.o.t.)
- ▷ Measure $\sigma_{\nu_e N}$: ν_e -fraction < 0.5 %
 - \rightarrow requires selection scheme

Electron-Neutrino Event Selection

1. Separating e^{\pm} from μ^{\pm}

2. Separating v_e from v_{μ}

- 1. Simulate charged lepton samples in detector tank with WCSim*
 - ▷ isotropic, homogeneous, uniform over E_{kin} < 1 GeV
- 2. Reconstruct using fiTQun*
- 3. Develop selection criteria to address charged-lepton identification

Sub-Cherenkov cut

Reject muons below Cherenkov threshold posing as electrons

Vertex-reco. discrepancy cut

Reject events with a large difference in vertex pos. & dir. between e and μ reco.

Reco. quality cut

Reject low-brightness and closeto-wall events for reco. quality

Cherenkov-ring resolution cut

Reject events too close to tank wall in propagation direction

* Thank you to Hyper-Kamiokande members:

Cristovao Vilela, Erin O'Sullivan, Hirohisa Tanaka, Benjamin Quilain, Michael Wilking

A. Burgman

Cherenkov-ring resolution cut

Reject events too close to tank wall in propagation direction

Selection acceptance

- *e* 46.3 %
- μ 43.3 %

Selection acceptance

- *e* 46.3 %
- μ 43.3 %

Reco. performance

 $e \frac{\text{corr-ID } 98.4\%}{\text{mis-ID } 1.58\%}$ $\mu \frac{\text{corr-ID } 99.7\%}{\text{mis-ID } 0.27\%}$

Separating v_e from v_μ

- 0. Simulate neutrino interaction vertices according to neutrino spectrum at ND with **GENIE**
- 1. Insert vertices into WCSim for detector response
- 2. Reconstruct using fiTQun
- 3. Apply charged-lepton criteria
- Develop additional selection criteria to address "real" vertex differences

Pion-like cut

Reject events identified as electrons, but more likely to be (neutral) pions

Multi-subevent cut

Reject events with multiple subevents

Tot. interactions

Tot. interactions

Trigger

Trigger

 $v_e = \overline{v}_{\mu}$ 3.57 × 10⁵ 1.89 × 10⁵

 $\frac{\nu_e}{4.74 \times 10^3} = \frac{\overline{\nu}_{\mu}}{1.39 \times 10^7}$

 3.81×10^7 5.61×10^4 9.09×10^4

 3.48×10^5 6.45×10^2 6.84×10^6

Event rate per 200 d running-year

Positive polarity (*v*-select)

Negative polarity $(\bar{\nu}$ -select)

Near detector objective:

- ▷ Measure v_{μ} -flux
 - \rightarrow Count + measure energy

$$E_{\nu} = \frac{m_f^2 - m_b^2 - m_l^2 + 2m_b E_l}{2(m_b - E_l + p_l \cos \theta_l)}$$

 8.33×10^{2}

 9.35×10^{1}

 4.12×10^{4}

 5.04×10^{3}

A. Burgman

2021.07.26

 $\frac{\nu_{\mu}}{7.25 \times 10^7}$

 $\frac{\nu_{\mu}}{6.88 \times 10^5}$

Event rate per 200 d running-year

		e -ID ν_{μ}	e -ID v_e	e-ID $ar{ u}_{\mu}$	$e\text{-ID} \ \overline{\nu}_e$				
	Trigger	1.09×10^{7}	5.26×10^{4}	2.66×10^4	8.82×10^{1}				
Positive polarity	Charged-lepton cuts	5.72×10^{5}	2.29×10^{4}	1.43×10^{3}	3.58×10^{1}				
(<i>v</i> -select)	Neutrino cuts	1.50×10^{4}	1.10×10^{4}	4.11×10^{1}	3.27×10^{1}				
	$S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) = 0.73$								
		e-ID v_{μ}	e-ID v_e	e-ID $\bar{\nu}_{\mu}$	e-ID $\overline{\nu}_e$				
	Trigger	$\frac{e\text{-ID }\nu_{\mu}}{1.08\times10^5}$	e -ID v_e 6.05 × 10 ²	$\frac{e\text{-ID }\bar{\nu}_{\mu}}{1.87 \times 10^6}$	e -ID $\overline{\nu}_e$ 4.74 × 10 ³				
Negative polarity	Trigger Charged-lepton cuts	$\frac{e\text{-ID }\nu_{\mu}}{1.08 \times 10^{5}}$ 6.72 × 10 ³	$\begin{array}{c} e\text{-ID} \ \nu_e \\ 6.05 \times 10^2 \\ 2.59 \times 10^2 \end{array}$	$\begin{array}{c} \textbf{e-ID} \ \boldsymbol{\bar{\nu}}_{\mu} \\ 1.87 \times 10^6 \\ 5.12 \times 10^4 \end{array}$	$e\text{-ID }\overline{\nu}_e$ 4.74×10^3 2.12×10^3				
Negative polarity (ν̄-select)	Trigger Charged-lepton cuts Neutrino cuts	$\begin{array}{c} e\text{-ID} \ \nu_{\mu} \\ 1.08 \times 10^5 \\ 6.72 \times 10^3 \\ 1.23 \times 10^2 \end{array}$	$e{-1D v_e}$ 6.05×10^2 2.59×10^2 1.23×10^2	$\begin{array}{c} e\text{-ID} \ \overline{\nu}_{\mu} \\ 1.87 \times 10^6 \\ 5.12 \times 10^4 \\ 1.93 \times 10^3 \end{array}$	$e-ID \ \overline{\nu}_e$ 4.74 × 10 ³ 2.12 × 10 ³ 1.86 × 10 ³				

Near detector objective:

- ▷ Measure $\sigma_{v_e N}$
 - \rightarrow Substantial increase in $v_e(\bar{v}_e)$ -contribution

Summary

Summary

ESSnuSB Near Detector

- Super Fine-Grained Detector (~ 1 m³)
- Water-Cherenkov
 Detector (~ 1 kt)

Objectives

- ▷ Measure v_{μ} -flux
- ▷ Measure $\sigma_{v_e N}$

 \triangleright Requires v_e selection scheme

Measuring $v_e N$ cross-section

Charged-lepton separation

4-fold selection

Neutrino separation

2-fold selection scheme

Pos. pol. $S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) = 0.73$ Neg. pol. $S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) = 0.97$

A. Burgman

Thank you

.

Backups

A. Burgman

2021.07.26 | EPS-HEP 2021

11 of 11

Backup 1.1 - Super Fine-Grained Detector

Similar to Hyper-K SuperFGD

 $\stackrel{\triangleright}{\sim} 1.4 \times 1.4 \times 0.5 \text{ m}^3$ $\stackrel{\circ}{\sim} 10^6 \text{ plastic scintillator cubes}$ $\stackrel{\circ}{\sim} 1 \times 1 \times 1 \text{ cm}^3$

Mass 1030 kg C₈H₈ 1014.55 kg C₁₈H₁₄ 15.45 kg

Positive	horn	ро	larity (se	lecting	ν)
----------	------	----	----------	----	---------	-------	---

	Time	Molecule	v_{μ}	Ve	v_{μ}	Ve
C C	200 days	C8H8	57 334.5	309.178	120.694	0.557
		C18H14	828.734	4.46	1.644	0.007
		Total	58 163.3	313.638	122.339	0.565
N C	200 days	C8H8	39 471	167.746	117.034	0.4649
		C18H14	560.937	2.383	1.768	0.0066
		Total	40 031.9	170.129	118.802	0.4715

Negative horn polarity (selecting $\bar{\nu}$)

	Time	Molecule	ν_{μ}	Ve	$\bar{\mathbf{v}}_{\mu}$	\overline{v}_{e}
_		C8H8	524.282	3.874	8 888.4	28.709
C	200 days	C18H14	7.574	0.056	120.994	0.391
C		Total	531.856	3.929	9 009.34	29.101
N C	200 days	C8H8	391.182	2.432	8 336.22	22.447
		C18H14	5.553	0.034	117.87	0.317
		Total	396.736	2.467	8 454.09	22.764

0000000

Backup 2.1 – Separating e^{\pm} from μ^{\pm}

Sub-Cherenkov cut

Reject muons below Cherenkov threshold posing as electrons

Backup 2.2 – Separating e^{\pm} from μ^{\pm}

Reco. quality cut

Reject low-brightness and closeto-wall events for reco. quality

2021.07.26

EPS-HEP 2021

000000000

Backup 2.3 – Separating e^{\pm} from μ^{\pm}

Cherenkov-ring resolution cut

Reject events too close to tank wall in propagation direction

Backup 2.4 — Separating e^{\pm} from μ^{\pm}

Vertex-reco. discrepancy cut

Reject events with a large difference in vertex pos. & dir. between e and μ reco.

Backup 3.1 – Separating v_e from v_{μ}

Pion-like cut

Reject events identified as electrons, but more likely to be (neutral) pions

000000000

Backup 3.2 – Separating v_e from v_{μ}

Multi-subevent cut

Reject events with multiple subevents

 u_{μ}

0000000