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A B S T R A C T

The paper presents an analytical and a numerical approach to studying the effectiveness of the cooling of a
granular target by gaseous helium. The increase in the target temperature is caused by an impinging beam
which deposits a very high power of 138 kW inside the limited volume of the target. A porous domain approach
is used to model the flow of helium through the packed-bed target. An efficient one-dimensional analytical
model is proposed to describe the transverse flow of gas helium, which accounts for its compressibility and
the heat exchange between the target spheres and the cooling gas. The predictions of this model are shown
to be in good agreement with more complex numerical studies done with Fluent.
1. Introduction

The design of high-power targets constitutes a challenging issue in
high-energy physics experiments. Such targets are struck by particle
beams with an average power that can exceed 1MW. A substantial part
of this power is released as heat in the target, so that efficient target
cooling is a very important issue. Apart from solid targets, e.g. made of
graphite, the use of a packed-bed of small spheres may provide a viable
solution. An early concept of such a target was proposed in [1], which
includes an interesting general discussion of the potential of this design.
Some computational fluid dynamics (CFD) results can be found in [2].
The main advantages of a packed-bed design are that due to its granular
structure, the stress level is reduced compared to solid targets, and
efficient gas cooling is possible by means of a medium flowing through
the target pores. Thanks to these advantages a packed-bed design is
now being considered for the ESSνSB experiment, the potential physics
reach of which is described in [3].

In this paper an efficient one-dimensional analytical model is de-
scribed, which allows for an assessment of the cooling of a packed-bed
target, with little computational effort. Both the gas flow through a
porous medium and heat exchange between the spheres and the cooling
gas have been modelled. An important element of this study is the
analysis of the steady-state operation of the target under a sequence of
very short proton beam pulses, which to the authors’ best knowledge is
new. The results obtained using the analytical model are shown to be
in good agreement with CFD results, which are computationally much
more demanding.

Compressible fluid flow through a porous medium, which does not
account for the heat exchange between the flowing gas, has been
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studied, e.g., in [4–7]. Ergun’s semi-empirical formula is very often
applied to model gas flow through such a medium, which will also be
used in the present study. Heat exchange for packed-beds has earlier
been described, e.g., in [4,8,9]. The application to the analysis of a
packed bed gas-cooled nuclear reactor has been described in [10].

The model developed in this paper can be used to study the effect
of various parameters, such as the packing ratio, different materials of
the spheres or the gas flow conditions, on the temperature inside the
target, which is of much importance in the design process.

2. Model description

The granular target considered in this study is a rod of length 𝐿𝑡 =
0.78m and diameter 𝐷𝑡 = 0.03m, consisting of titanium spheres of mean
diameter 𝑑 = 3 × 10−3 m. A model of the target with inlet and outlet
slots is shown in Fig. 1. It is assumed for the purpose of the present
study, that the porosity of the target is equal to 𝜖 = 0.34, so that 66% of
the target consists of titanium alloy spheres, while the space in between
the spheres is filled with the coolant (gaseous helium).

During the ESSνSB experiment, the purpose of which is the produc-
tion of an intense neutrino super beam [3], a 5MW proton beam (𝐸𝑝+ =
2.5GeV) from the linear accelerator at the European Spallation Source
at Lund (Sweden), will be split laterally into four 1.25MW beams, each
of which striking a separate target placed inside a magnetic horn. The
impinging proton beam will consist of 1.3 μs proton pulses repeated at a
frequency of 𝑓 = 14Hz. As a result of the interaction of the beam with
the target spheres, and assuming that the spheres are made of titanium,
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Fig. 1. 3-dimensional model of the target with inlet slot at the bottom and outlet slot at top, along the whole length of the target.
an estimated 138 kW will be dissipated in the target as heat. Efficient
heat removal from the target becomes therefore a very important issue.

The heat energy is deposited by the beam inside the spheres over a
short time of about 1 μs at the beginning of each cycle, and afterwards
transferred to the surrounding medium over the rest of the cycle (𝑡𝑐 =
1∕𝑓 = 0.071 s), in accordance with the known laws of heat transfer.
The principal mechanism is the transmission of heat from the surface
of the spheres to the helium flowing outside, known as forced heat
convection. The dissipation of heat from the spheres is also caused by
radiation, heat conduction between the spheres themselves at the points
of contact and heat conduction between the spheres and the casing (for
the spheres in touch with the inner surface of the target shell).

Because of the amount of energy released in the titanium spheres, a
large helium mass flow rate is required. Pushing such a big amount of
gas through the target in the axial direction is not feasible due to both
its length and small diameter, but especially due to the high sphere-
packing ratio inside the target. This is the main reason for selecting
transverse target cooling via the introduction of two slots (inlet &
outlet) located on the perimeter, on the opposite sides of the target,
as shown in Fig. 1.

3. Analytical approach

In the analytical model of heat transfer inside the granular target
the assumption is made that for a given longitudinal z-coordinate the
temperature, pressure and velocity of helium are functions of only
the y-coordinate. In addition, the solution is obtained for the steady-
state condition, when the balance between the heat introduced into the
system and the heat absorbed by the flowing gas is reached.

3.1. Properties of helium under considerable temperature and pressure
change

Under the changing pressure and thermal conditions the properties
of helium also change. When determining the heat transfer coefficient
between the titanium spheres and the flowing helium, it is essential to
consider both the dynamic viscosity and thermal conductivity of he-
lium. Experimental data shows that both these coefficients are strongly
dependent on temperature and only slightly on pressure. In practical
applications, semi-empirical equations that specify the dynamic viscos-
ity and thermal conductivity of a gas can be used. Based on [11], the
following equations, which hold true within the pressure range from
1 to 100 bar and from the room temperature of about ∼ 293K up to
1800K, are used in the present study:

𝜇 = 1.865 ⋅ 10−5
(

𝑇
𝑇0

)0.7
(1)

𝜆 = 0.144 ⋅ (1 + 2.7 ⋅ 10−9𝑝)
(

𝑇
𝑇0

)0.71⋅
(

1−2⋅10−9𝑝
)

(2)

in which 𝑇 is the temperature of helium in kelvin (𝑇0 = 273K), while 𝑝
is helium pressure in pascal. The relation between the Prandtl number
2

and the dynamic viscosity and thermal conductivity is described by the
formula:

Pr =
𝑐𝑝𝜇
𝜆

(3)

where 𝑐𝑝 is the specific heat of helium.
According to [11], specific heat is equal to 5195 J∕(kgK). It changes

very little with temperature and pressure (it increases slightly with
pressure and decreases with temperature), therefore a constant value
of this parameter will be used.

3.2. Heat exchange between the sphere surface and the cooling gas – heat
transfer coefficient

Taking into account the high mass flow of the coolant, one can
assume that the convection of heat from the spheres to the helium
dominates over other heat dissipation mechanisms. Heat transfer dur-
ing forced heat convection is a complex process, which depends on
many factors, such as: the velocity and direction of the coolant relative
to the cooled object, the parameters of the fluid (density, viscosity,
thermal conductivity), as well as the shape and size of the object itself.
The amount of the heat energy collected by the helium flowing past
the spheres can be estimated via the Nusselt number (Nu), which in
turn can be calculated from an empirical formula that relates it to the
Reynolds and Prandtl numbers. In the present calculations the follow-
ing formulas, applicable to a porous medium (which is typically used
for modelling packed beds), are used [4]. For the reduced Reynolds
number

Re =
𝑢𝑠𝑓𝑑
𝜈

(4)

in which: 𝑢𝑠𝑓 is the superficial velocity (the product of local velocity
𝑢 and the porosity 𝜖 of the packed bed) of flowing helium, 𝜈 is its
kinematic viscosity and 𝑑 is the diameter of a sphere. The Nusselt
number can be obtained using a Wakao-type expression for a porous
medium, given by the formula:

Nu = 2 + 1.1 ⋅ Pr1∕3 ⋅ Re1∕2 (5)

From the definition of the Nusselt number the heat transfer coefficient
ℎ
[

W∕(m2 K)
]

is equal to:

ℎ = 𝜆Nu
𝑑

(6)

Since the heat transfer coefficient as well as the dynamic and
kinematic viscosity of helium tend to change with pressure and temper-
ature, while the Reynolds number depends on the velocity of helium
flow at a given location, the heat transfer coefficient ℎ as calculated
from Eq. (6) depends on the location inside the target.

3.3. Equation governing the temperature of the spheres

The absorption of beam energy by the spheres takes place during a
very short time of a beam pulse, at the beginning of each energy release
cycle. The heat energy is absorbed by the whole volume of the spheres.
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Afterwards, during the rest of the cycle 𝑡𝑐 , the heat energy is being
ransferred to the helium flowing past the spheres. It is to be expected
hat the part of a sphere closest to its surface will cool faster than the
ne near the centre. The cooling of the outer layer of a sphere as a result
f the heat transfer from the sphere to the coolant is accompanied by
he process of heat conduction from the centre of the sphere towards
ts outer regions. The combination of both these processes is accounted
or by the Biot number [4], defined by the formula:

i = ℎ
𝜆𝑇 𝑖

⋅
𝑉𝑠
𝐴𝑠

(7)

in which 𝜆𝑇 𝑖 is the thermal conductivity of titanium, ℎ is the heat
ransfer coefficient between a sphere and the cooling gas, 𝑉𝑠 is the

volume of a sphere and 𝐴𝑠 its surface. When the calculated Biot number
is much lower than one, the total heat-transfer resistance is dominated
by the resistance to the heat flow between the surface of the sphere and
helium. For this reason the temperature distribution inside the sphere
tends to be essentially uniform. Under the assumption that the heat
transfer coefficient does not exceed 5000W∕(m2 K), the Biot number is
less than 0.11, therefore the temperature distribution inside the spheres
will be nearly uniform. In order for the Biot number to be equal to one,
the heat transfer coefficient ℎ between the spheres and helium would
need to reach the value of 43 800W∕(m2 K).

The heat energy released from the surface of the spheres and that
introduced into the cooling gas during a small time interval 𝑑𝑡 are in
balance. Considering a small element 𝑑𝑉 of the target, the following
equation holds:

𝑑𝑚 ⋅ 𝑐𝑠 ⋅ 𝑑𝑇𝑠 = −
(

𝑇𝑠 − 𝑇
)

⋅ 𝑑𝑆 ⋅ ℎ ⋅ 𝑑𝑡 (8)

where: 𝑇𝑠 is the temperature of a sphere, 𝑇 is the cooling gas temper-
ature, 𝑐𝑠 stands for the specific heat of the spheres, ℎ - heat transfer
oefficient between the sphere surface and the coolant, 𝑑𝑚, 𝑑𝑆 - total
ass and surface of the spheres in element 𝑑𝑉 , respectively. The tem-
erature of the spheres 𝑇𝑠 and the temperature of gas 𝑇 are functions
f time and coordinates describing the location inside the target.

The differential equation that defines the temperature of the spheres
s given as follows:

0
𝜕𝑇𝑠
𝜕𝑡

+ 𝑇𝑠 = 𝑇 (9)

0 =
𝜌𝑠𝑐𝑠𝑑
6ℎ

(10)

ere, 𝜌𝑠 is the mass density of the spheres.
During the steady-state operation of the target the temperature

hange of the cooling gas with time is insignificant (small fluctuations
hat take place within each cycle can be disregarded). Therefore, the
as temperature 𝑇 can be approximated by its time-average 𝑇𝑎. The
olution of the differential equation (9) under steady-state operation is:

𝑠 = 𝑇𝑎 +
((

𝑇𝑠
)

𝑚𝑎𝑥 − 𝑇𝑎
)

exp(−𝑡∕𝜏0) (11)

here:
(

𝑇𝑠
)

𝑚𝑎𝑥 - temperature of a sphere at 𝑡 = 0+ directly after the
eam impact, at the beginning of each cycle.

.4. Energy deposition inside the target

Energy is deposited inside the spheres non-uniformly throughout the
arget volume. The most energy is deposited in the immediate vicinity
f the target axis and it decreases with the distance from the axis.

decrease in energy also takes place along the axial coordinate 𝑧
Fig. 1). Based on the results obtained with FLUKA, the distribution of
he average beam power density inside the target can be approximated
or the purpose of the following analysis by a function:

(𝑥, 𝑦, 𝑧) =

⎧

⎪

⎨

⎪

⎩

𝑎0𝑒
− 1

2
𝑥2+𝑦2

𝜎2
(

𝑏0 + 𝑏1𝑧 + 𝑏2𝑧
2 + 𝑏3𝑧

3 + 𝑏4𝑧
4) , for 𝑧 ≤ 0.08m

𝑎0𝑒
− 1

2
𝑥2+𝑦2

𝜎2
(

𝑐0 + 𝑐1𝑧 + 𝑐2𝑧
2 + 𝑐3𝑧

3 + 𝑐4𝑧
4) , for 𝑧 ≥ 0.08m
3

(12)
Table 1
Parameters of the power density function.

Parameter Value Parameter Value

𝑎0 1.057 × 109 [W/m3]

𝑏0 1.806 [–] 𝑐0 2.320 [–]
𝑏1 42.35 [1/m] 𝑐1 −1.871 [1/m]
𝑏2 −1386 [1/m2] 𝑐2 −10.88 [1/m2]
𝑏3 18 410 [1/m3] 𝑐3 21.83 [1/m3]
𝑏4 −89 190 [1/m4] 𝑐4 −11.98 [1/m4]

Table 2
Power deposition inside individual sectors of the target.

Sector number Sector coordinates: 𝑧1–𝑧2 [m] Power [kW]

I 0–0.08 28.49
II 0.08–0.18 31.76
III 0.18–0.28 25.39
IV 0.28–0.38 19.09
V 0.38–0.48 13.68
VI 0.48–0.58 9.52
VII 0.58–0.68 6.50
VIII 0.68–0.78 4.03

Total 0–0.78 138.46

in which 𝜎 = 0.005m, while the values of the remaining parameters are
listed in Table 1.

Power density function 𝐺(𝑥, 𝑦, 𝑧)
[

W/m3
]

introduced above speci-
ies the power deposited by the beam per unit volume of the target.
owever, the energy is stored in the spheres, which occupy only par-

ially the volume of the target. Therefore, it is convenient to introduce
pecific energy 𝑞

[

J∕kg∕cycle
]

, the amount of energy deposited in 1 kg
f sphere material during one cycle of operation. The value of 𝑞 can be
alculated from the power density function using the formula:

(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑦, 𝑧) 1
𝛽𝑉 𝜌𝑠𝑓

(13)

here 𝛽𝑉 is the sphere packing ratio.
In order to reduce the scope of the problem and to facilitate the

alculations, the target is subdivided into several sectors of 10 cm
ength, except the first one, the length of which will be taken to be 8 cm.
able 2 lists the values of power deposited in each sector, defined by
oordinates 𝑧1 and 𝑧2, as well as the total power inside the target.

In addition, in the analytical model and in comparing the Fluent 3D
esults with those obtained from the one-dimensional analytical model,
power density function �̃�(𝑦)

[

W/m
]

vs. the transverse coordinate y
ill be used:

̃ (𝑦) = ∫

𝑧2

𝑧1
∫

√

𝐷𝑡
2∕4−𝑦2

−
√

𝐷𝑡
2∕4−𝑦2

𝐺(𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑧 (14)

3.5. Coolant heat balance

During the steady-state operation of the target a balance is estab-
lished between the heat energy transmitted from the proton beam to
the spheres and the increase of the enthalpy of the gas flowing through
the target, during the cycle 𝑡𝑐 of heat exchange. Thus all the energy
from the beam in the period 𝑡𝑐 is eventually transmitted through the
spheres to the cooling gas. It has been pointed out in Section 3.3 that
the fluctuation of the sphere temperature in relation to the average
temperature is small. From the point of view of heat transfer the spheres
can be considered as a sub-system that averages and redistributes the
heat energy provided by proton beam pulses.

The following equations will be used to model the cooling gas
[12–14]: equation of conservation of momentum (taking into account
the flow resistance due to the packed bed [5,6]):
𝑑𝑝

= −𝜌𝑢 𝑑𝑢 −
(𝜇

+ 1𝜌𝐶2|𝑢𝑠𝑓 |
)

𝑢𝑠𝑓 (15)

𝑑𝑦 𝑑𝑦 𝛼 2
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Fig. 2. Graph of sphere temperature 𝑇𝑠 and average temperature 𝑇𝑎 of flowing gas change during a steady-state operation of the target (red — heating, black — cooling).
ideal gas law:

𝑝 = 𝜌𝑅𝑇𝑎 (16)

equation of conservation of mass:

𝜌𝐴𝑒𝑓 (𝑦)𝑢 = �̇� (17)

specific heat capacity equation:

𝑐𝑝
𝑑𝑇𝑎0
𝑑𝑦

= 1
�̇�
�̃�(𝑦) (18)

Here: 𝜌 is the gas density, 𝑇𝑎 - average temperature of the flowing gas, 𝑢
- average local velocity and 𝑇𝑎0 - stagnation temperature. Additionally,
𝐴𝑒𝑓 represents the effective cross-section area through which the flow
of cooling gas takes place, 𝑅 [J∕(kgK)] is the individual gas constant for
helium, while �̇� [kg∕s] - mass flow rate of the helium passing through
the target.

Eq. (15) is valid under the assumption that the spheres packed in
the target can be modelled by a corresponding homogeneous isotropic
porous medium of porosity 𝜖 = 1 − 𝛽𝑉 . The additional term on the
right-hand side of Eq. (15) represents the resistance of the porous
medium to gas flow, due to both viscous and inertial losses. The value
of permeability 𝛼 [m2] and the inertial loss coefficient 𝐶2 [1∕m] can be
determined using the following formulas:

𝛼 = 𝑑2

150
𝜖3

(1 − 𝜖)2
, 𝐶2 =

3.5
𝑑

(1 − 𝜖)
𝜖3

(19)

The velocity 𝑢𝑠𝑓 in Eq. (15) is the so-called superficial velocity, which
is related to the average local velocity 𝑢 by the formula 𝑢𝑠𝑓 = 𝜖𝑢.

The stagnation temperature 𝑇𝑎0 depends on the temperature 𝑇𝑎 of
the flowing gas through the formula:

𝑇𝑎0 = 𝑇𝑎
(

1 + 𝜅 − 1
2

Ma2
)

(20)

where Ma is the Mach number:

Ma = 𝑢
√

𝜅𝑅𝑇𝑎
(21)

The specific heat ratio 𝜅 of helium is equal to 5/3.

3.6. Steady-state operation of the target

In order for the target to operate in a steady-state condition, the
heat energy transmitted from the beam to the spheres and the heat
energy transferred from the spheres to helium must be balanced over
each period 𝑡𝑐 . This condition can be written as:
(

𝑇
)

− 𝑇
(

𝑡
)

= 𝛥𝑇 (22)
4

𝑠 𝑚𝑎𝑥 𝑠 𝑐 𝑠
where 𝛥𝑇𝑠 is the sphere temperature increase due to a short beam pulse
at the beginning of each cycle. The increase in the temperature is equal
to:

𝛥𝑇𝑠 =
𝑞
𝑐𝑠

(23)

in which 𝑐𝑠 is the specific heat of the material of the spheres, while 𝑞
is the energy transmitted at the beginning of each cycle from the beam
to 1 kg of spheres. The increase in temperature 𝛥𝑇𝑠 and specific energy
𝑞 (Eq. (13)) depend on the position inside the target.

By combining the steady-state condition given by Eq. (22) with
Eq. (11) describing the temperature of the spheres, one obtains the
formulas that determine the maximal and minimal temperature of the
spheres in steady-state operation:
(

𝑇𝑠
)

𝑚𝑖𝑛 = 𝑇𝑎 +
exp(−𝑡𝑐∕𝜏𝑜)

1 − exp(−𝑡𝑐∕𝜏0)
𝛥𝑇𝑠

(

𝑇𝑠
)

𝑚𝑎𝑥 = 𝑇𝑎 +
1

1 − exp(−𝑡𝑐∕𝜏0)
𝛥𝑇𝑠

(24)

The graph representing the sudden increase in the temperature 𝑇𝑠 of
a given sphere and its subsequent decrease, as obtained from Eqs. (11)
and (24), is shown schematically in Fig. 2. The average temperature 𝑇𝑎
of the flowing gas is also shown.

4. Results of calculations

The main focus of the calculations has been placed on the first sector
(Table 2) of the target, in which the most energy will be deposited
during target operation.

In accordance with the discussion and equations of the previous
chapters, the calculations can be performed in two stages. In the first
stage the focus is placed on calculating the parameters of the cooling
gas, while in the second — on the temperature of the spheres inside
the target. The calculation of the gas parameters is done by solving
the system of Eqs. (15)–(18), after the preliminary introduction of Eqs.
(1), (19) and formula 𝑢𝑠𝑓 = 𝜖𝑢 into Eq. (15) and at the same time Eqs.
(14), (20), (21) into Eq. (18). Data used in the calculations have been
collected in Appendix. The parameters of the gas sought are: pressure
𝑝(𝑦), temperature 𝑇𝑎(𝑦), velocity 𝑢(𝑦) and density 𝜌(𝑦).

The calculations of the sphere temperature, performed in the second
stage, utilize the results obtained in the previous step. These calcu-
lations consist in determining the heat transfer coefficient ℎ, using
Eq. (6) with the introduction of Eqs. (1)–(5), and then calculating the
time constant 𝜏𝑜 using Eq. (10), and finally obtaining the minimal
temperature (𝑇𝑠)𝑚𝑖𝑛 and maximal temperature (𝑇𝑠)𝑚𝑎𝑥 of the spheres
from Eq. (24). All results obtained in the second stage are functions
of 𝑦.
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Fig. 3. Helium flow parameters obtained from the analytical approach for transverse flow (first sector).
Fig. 4. (𝑇𝑠)𝑚𝑎𝑥, (𝑇𝑠)𝑚𝑖𝑛 and 𝛥𝑇𝑠 of the spheres in each beam cycle (first sector).
Fig. 3 presents the temperature 𝑇𝑎, pressure 𝑝, velocity 𝑢 and density
𝜌 of helium within the first target sector, plotted against transverse local
co-ordinate 𝑦𝑠 measured with respect to the location of the inlet slot.
The results of calculating the sphere temperatures (𝑇𝑠)𝑚𝑎𝑥, (𝑇𝑠)𝑚𝑖𝑛 and
𝛥𝑇 are shown in Fig. 4.
5

𝑠

In addition to the analytical model discussed, a CFD model has been
prepared using the ANSYS Fluent package. Whereas with the analytical
solution it is possible to determine both the parameters of the gas and
the temperature of the spheres, the CFD approach is limited to the
parameters of the gas.
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𝑚

Fig. 5. 2D mesh used in the CFD analysis of transverse helium flow through the
granular target, with regions corresponding to the target, the inlet and the outlet slot.

In the CFD simulations it has been assumed that the porous medium
in question is homogeneous and isotropic, in which case the flow
resistance force (per unit volume) in the packed bed is expressed by
6

formula [15]:

𝐹𝑖 = −
(𝜇
𝛼
(

𝑢𝑠𝑓
)

𝑖 + 𝐶2
1
2
𝜌|𝑢𝑠𝑓 |

(

𝑢𝑠𝑓
)

𝑖

)

, 𝑖 = 𝑥, 𝑦, 𝑧 (25)

The helium and target parameters and data used in the calculations
have been grouped in Appendix. In the CFD simulations dynamic
viscosity had to be assumed to be constant (𝜇 = 1.99 × 10−5 Pa s).

The boundary conditions for the CFD analysis have been defined by
specifying the pressure inlet at gauge pressure 𝑝𝑔𝑝 = 0 bar and absolute
operating pressure 𝑝𝑜𝑝 = 10 bar. The helium inlet temperature has been
assumed to be equal to 293K.

Fig. 5 shows the plane mesh of the target cross-section used in the
numerical analysis of the transverse helium flow, with specific zones
corresponding to the target and the inlet and the outlet slots. This mesh
has then been expanded along the target length to obtain a volumetric
mesh of a 3-D model.

Fig. 6 shows the results of the CFD analysis using the ANSYS Fluent
software, under the steady-state condition, for helium global mass flow
̇ = 200 g∕s (mass flow for the whole target) and the beam power

distribution inside the target as specified earlier in Section 3.4. As a
result of the symmetry of the problem all the plots in Fig. 6 display
symmetry with respect to the yz plane — all quantities are described
by even functions of the x-coordinate. Along the 𝑧-axis the profiles
shown appear similar. However, since the most proton beam power
is dissipated in the initial part of the target, the temperature tends to
decrease with the z-coordinate, after the first sector.

As can be seen from both the analytical and the CFD simulations, the
velocity of the flowing gas decreases in the vicinity of the target axis,
where the beam power density is the highest, and it increases at the
outlet (Figs. 3, 6a). The decrease in the gas velocity in the region close
to the target axis results in a significant reduction in the heat transfer
Fig. 6. Distribution of superficial velocity [m∕s] (a), temperature [K] (b), absolute pressure [Pa] (c) and density [kg∕m3] (d) of helium flowing upwards in transverse direction
through the first two sectors of the target under constant helium mass flow 200 g∕s and non-homogeneous power deposition inside the target of total value �̇� =138.53 kW.
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Fig. 7. Mass weighted average for helium flow parameters obtained for the transverse flow (first sector) from the analytical solution (red dashed lines) and the numerical solution
(black solid lines).
coefficient in this region, which in turn decreases the heat exchange
between the spheres and the gas. As a result, there is a considerable
increase in the temperature of the spheres in this region, which can be
seen in Fig. 4.

The maximum temperature of the spheres is approximately 800K,
much lower than the melting point of titanium (approx. 2000K). There-
fore helium cooling is efficient enough to keep the temperature at an
acceptable level, so that the possibility of titanium melting is avoided.

When comparing the velocities obtained from the analytical and
CFD computations it is important to bear in mind that the latter uses
superficial velocity 𝑢𝑠𝑓 = 𝜖𝑢. When the re-calculation is performed
to obtain the value of the local velocity, the results obtained from
both approaches are comparable. It needs to be pointed out that the
maximal velocity of the gas is much lower than the velocity of sound
in helium under the same conditions (maximum value of Mach number
Ma𝑚𝑎𝑥 ≈ 0.2). The gas density is found to decrease about two times
during the flow across the target.

In order to describe the target cooling system under consideration,
the values of temperature, pressure and flow velocity are of particular
importance. Fig. 7 shows the graphs of the mass-weighted average
temperature, pressure and velocity of helium inside the first sector
of the target obtained from the CFD results in comparison to the
corresponding results obtained via the analytical approach, previously
presented in Fig. 3.

The calculations have focused on the first sector of the target, in
which the most of the beam energy is deposited. The biggest difference
between the results exists for the gas pressure, the CFD simulations
resulting in a higher gas pressure drop between the inlet and the
outlet. This discrepancy is mostly due to different assumptions about
the viscosity of helium used in the two models. The results obtained
for the temperature and velocity from the CFD and analytical approach
agree well.

5. Conclusions and further considerations

The paper has discussed two approaches to solving the problem
of a compressible gas flow through a granular target, combined with
7

convective heat transfer. In the analytical approach the heat transfer
and fluid mechanics equations were used to determine the transfer of
heat at all stages, from the proton beam impact, through the spheres
and then to the cooling gas. As for the calculation performed using
the CFD approach, it was assumed that the heat was transmitted
directly from the proton beam to the gas flowing through the target,
omitting the sphere heating. In both cases, the granular target was
modelled by a porous medium in order to simplify the calculations.
The results were obtained for the temperature, pressure, velocity and
density distribution of helium inside the target.

Both the analytical and the CFD calculations have been performed
with a realistic energy distribution, by using the power distribution
function obtained by fitting the values obtained with the FLUKA soft-
ware for the future ESSνSB conditions. The results of the analytical
and the CFD analyses are very comparable, showing that the analytical
model can be used instead of the computationally more expensive CFD
approach in the evaluation of target cooling. The analysis has shown
that it is feasible to utilize gaseous helium to effectively cool down a
granular target, in which very high power is deposited by the impinging
proton beam. Both analyses have considered cooling under a steady-
state condition. No gradual increase of the temperature of the spheres
under subsequent beam pulses has been dealt with in this paper.
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Appendix. Summary of parameters and data used in the calcula-
tions

Gaseous helium
Individual gas constant 𝑅 2079 J/(kg K)
Specific heat capacity 𝑐𝑝 5195 J/(kg K)
Specific heat ratio 𝜅 = 𝑐𝑝∕𝑐𝑣 5/3
Inlet parameters of helium
Operational pressure 𝑝𝑜𝑝 1 × 106 Pa = 10 bar
Temperature 𝑇 293 K
Density 𝜌 1.64 kg/m3

Velocity 𝑢 66 m/s
Mach number Ma 0.066
Mass flow �̇�𝑝 0.2 kg/s
Superficial velocity 𝑢𝑠𝑓 19.8 m/s

Target (packed bed)
Length 𝐿𝑡 0.78 m
Diameter 𝐷𝑡 0.03 m
Average volume packing ratio 𝛽𝑉 0.66
Width of inlet and outlet slot 𝑏𝑡 0.008 m
Titanium spheres
Diameter 𝑑 0.003 m
Density 𝜌𝑠 4500 kg/m3

Specific heat capacity 𝑐𝑠 600 (J/kg K)
Porous medium
Permeability 𝛼 5.4 × 10−9 m2

Viscous resistance 1∕𝛼 1.85 × 108 1/m2

Inertial resistance 𝐶2 1.96 × 104 1/m
Porosity 𝜖 = 1 − 𝛽𝑉 0.34
8

Proton beam
Pulse repetition frequency 𝑓 14 Hz
Period of one cycle 𝑡𝑐 0.07143 s
Energy transmitted to spheres has been specified in Section 3.4
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