Physics reach of ESSnuSB

Monojit Ghosh (On behalf of ESSnuSB Collaboration)

Ruder Boskovic Institute, Zagreb, Croatia University of Hyderabad, Hyderabad, India

TAUP 2021 IFIC, Valencia, Spain (Online) 26 August - 3 September, 2021

Based on: A. Alekou et al. [ESSnuSB], 2107.07585

Neutrino Oscillation

- Neutrino oscillation: transition from one flavor to another time=0; time=t; ν_e ; \rightarrow distance=L; \rightarrow ν_e , ν_μ , ν_τ ;
- This is because ν_e , ν_μ , ν_τ are combinations of ν_1 , ν_2 , ν_3 ;

$$|\nu_e\rangle = U_{e1}|\nu_1
angle + U_{e2}|\nu_2
angle + U_{e3}|\nu_3
angle$$

- *U* is 3 × 3 matrix
- The transition probability $\nu_{\alpha} \rightarrow \nu_{\beta}$:

$$P_{lphaeta}=|\langle
u_eta|
u_lpha(t)
angle|^2$$

where α,β are e, μ or τ

Neutrino oscillation in 3 generation

Full three flavour vacuum probability formula:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{i < j} \operatorname{Re}[U_{\alpha i}^* U_{\beta j}^* U_{\beta i} U_{\alpha j}] \sin^2 \frac{\Delta_{ij} L}{4E} + 2\sum_{i < j} \operatorname{Im}[U_{\alpha i}^* U_{\beta j}^* U_{\beta i} U_{\alpha j}] \sin 2 \frac{\Delta_{ij} L}{4E}$$

$$\Delta_{ij} = m_i^2 - m_j^2$$

Parameters of neutrino oscillation:

- Elements of U: Three mixing angles and one Dirac phase $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$
- Two mass squared differences: Appears in $P_{\alpha\beta}$ $\Delta_{21} = m_2^2 - m_1^2$, $\Delta_{31} = m_3^2 - m_1^2$
- L and E

Unknowns

- The sign of Δm_{31}^2 i.e. $\Delta m_{31}^2 > 0 \Rightarrow$ Normal Hierarchy (NH) or
 - $\Delta m^2_{31} < 0 \Rightarrow$ Inverted Hierarchy (IH).

- The octant of θ_{23} i.e. $\theta_{23} > 45^\circ \Rightarrow$ Higher Octant (HO) or $\theta_{23} < 45^\circ \Rightarrow$ Lower Octant (LO).
 - δ_{CP} (violation and precision)

・ロト ・四ト ・ヨト ・ヨト

The ESSnuSB experiment

- L = 540 km/360 km
- E = 0.35 GeV
- 538 kt WC detector
- Unique: Probes Second oscillation maximum

This Work

Calculated updated physics performance with

updated flux and updated event selection

Updated flux

- Old flux was from the MEMPHYS project
- Significant improvement in the new flux

Updated efficiency (ν_e)

- Old selection was from the MEMPHYS project
- Significant improvement in the ν_e selection

Updated efficiency (ν_{μ})

- Old selection was from the MEMPHYS project
- ν_{μ} selection is almost same

Normalization error

- 5% in signal
- 10% in background

Shape error

• Not included in the current analysis

Probability and Flux

- Probes 2nd maximum
- Separation between the curves are more in 2nd maximum

ν_e events/year

	Channel	L = 540 km	L = 360 km
Signal	$ u_{\mu} ightarrow u_{e} \left(ar{ u}_{\mu} ightarrow ar{ u}_{e} ight)$	292.77 (70.04)	557.52 (118.80)
Background	$ u_{\mu} ightarrow u_{\mu} \left(ar{ u}_{\mu} ightarrow ar{ u}_{\mu} ight)$	20.41 (4.41)	68.12 (13.81)
	$ u_e ightarrow u_e (ar u_e ightarrow ar u_e) $	133.06 (25.13)	298.28 (57.13)
	$ u_{\mu}$ NC ($ar{ u}_{\mu}$ NC)	14.14 (2.27)	31.82 (5.11)

୬ ୯.୦ 12 / 20

CP violation sensitivity

CPV vs run-time

• Left: same χ^2 but for $\delta_{\rm CP} = -90^\circ$

• Right: Fraction of $\delta_{\rm CP}$ for which $\chi^2 \ge 25$

CP precision sensitivity

• To precisely measure $\delta_{\rm CP}$

$$\chi^{2} = \frac{(N(\delta_{CP}^{tr}) - N(\delta_{CP}^{test}))^{2}}{N(\delta_{CP}^{tr})}$$
$$= 0 \text{ for } \delta_{CP}^{tr} = \delta_{CP}^{test}$$

$$\neq$$
 otherwise

Width is the error

•
$$\delta_{CP} = 0^\circ > \delta_{CP} = \pm 90^\circ$$

Hierarchy sensitivity

• To exclude wrong hierarchy

$$\chi^2 = \frac{(N(\Delta_{31}) - N(-\Delta_{31}))^2}{N(\Delta_{31})}$$

- More events and more matter effect for 360 km
- Matter effect $\sim E$ which is higher for 360 km

Octant sensitivity

- Limited Octant sensitivity
- 360 is better

Precision of θ_{23} - Δ_{31} sensitivity

- Current best-fit denoted by star
- 360 is better

Effect of shape systematics

- Solid: 540 km
 Dashed: 360
- For 0% 360 is better for 5% 540 is better

Figure by Enrique Fernandez Martinez and Salvador Rosauro Alcaraz

Summary

- Unique experiment to probe 2nd oscillation maximum
- Excellent CP sensitivity
- 360 is better without any shape error
- 540 seems better with shape error

Summary

- Unique experiment to probe 2nd oscillation maximum
- Excellent CP sensitivity
- 360 is better without any shape error
- 540 seems better with shape error

Thank You