How can we "see" the elusive neutrinos in a mine 1000 m below ground?

Kaare Endrup lversen Doctoral student, Lund University

Why does matter exist? Swedish Big Science Forum 2024

Refresher: What are we trying to do?

- 1. "See" neutrinos passing through the Zinkgruvan mine
- 2. Count and study them

Neutrinos are hard to detect!

Billions of them fly through us all the time The chance of them hitting something is incredibly low **but not zero**!

1

Neutrinos are hard to detect!

So what do you do to detect them?

Neutrinos are hard to detect!

- So what do you do to detect them?
- Have a lot of them
 increases the chance of a hit

Neutrinos are hard to detect!

- So what do you do to detect them?
- Have a lot of them

 increases the chance of a hit

 Have a big detector

 increases the chance of hitting the detector

11

What happens when a neutrino "finally" hits an atom?

What happens when a neutrino "finally" hits an atom?

A new particle is produced!

What happens when a neutrino "finally" hits an atom?

A new particle is produced!

Typically **an electron** or it's heavier cousin **the muon**

It has **electric charge**!

How do we see this tiny new particle in our detector?

Good news: **It's fast**

Swedish Big Science Forum 2024

How do we see this tiny new particle in our detector?

Good news: **It's fast**

 $\mathbf{e}^{\mathsf{I}}\mu^{\mathsf{I}}$

Einstein: Nothing can be faster than light (**in vacuum**)

12

Swedish Big Science Forum 2024

How do we see this tiny new particle in our detector?

Good news: **It's fast**

Einstein: Nothing can be faster than light (**in vacuum**)

- In a material, some particles can go faster than light

Charged particles faster than light emit light!

Cherenkov Light: Shaped like **a cone** behind the particle

Charged particles faster than light emit light!

Cherenkov Light: Shaped like **a cone** behind the particle

Another requirement for our detector:

2. It has to be **transparent**!

So how do we collect the light?

Light sensors cover the walls of the detector

Photomultiplier Tubes: Digital cameras that can enhance very small signals

Superkamiokande, Japan

Now we know what our detector should look like

Superkamiokande, Japan

Now we know what our detector should look like

But how do we know anything **about the neutrinos** from this ring-shaped light?

Reconstruction: Going backwards

Physics

Atom hit

Charged particle

Cherenkov light

Detector signal

Reconstruction: Going backwards

Reconstruction

Simulations

Our knowledge of what happens in the detector is good!

1. 2. 3.

Simulations

Our knowledge of what happens in the detector is good!

- 1. Make a **computer model** of the detector
- 2.
- 3.

Simulations

Our knowledge of what happens in the detector is good!

- 1. Make a **computer model** of the detector
- Simulate a lot of neutrinos with different properties
 3.

ESS neutrino Super Beam

Simulations

Our knowledge of what happens in the detector is good!

- 1. Make a **computer model** of the detector
- 2. Simulate **a lot of neutrinos** with different properties
- 3. **Compare** real measurements with the simulations

Can we do this using AI?

We can use AI to compare real measurements to simulations

Other methods exist, but AI is **very fast**

25

Wrapping up

- Neutrinos "hits" are **very rare**
- A new charged particle is produced
- The new particle is fast and **emits light**

Wrapping up

- Neutrinos "hits" are **very rare**
- A new charged particle is produced
- The new particle is fast and **emits light**

Large detector, full of water, covered in light-sensors

Wrapping up

- Neutrinos "hits" are **very rare**
- A new charged particle is produced
- The new particle is fast and **emits light**

Large detector, full of water, covered in light-sensors

- Measurements are compared with **simulations**
- Al can be used for this

