THE ESS LINAC AS THE DRIVER FOR ESSNUSB

Beam physics section leader / Accelerator Division / ESS

Mamad Eshraqi for ESSnuSB

-28-

the second second

Energy	2.0 GeV				
Current	62.5 mA				
Repetition rate	14 Hz				
Pulse length	2.86 ms				
Losses	< W/m				
lons	р				
Flexible/Upgradable design					
Minimize energy consumption					

M. Eshraqi

2024 Jan 31

M. Eshraqi

of neutron and X-ray tomography data, respectively. Courtesy of E.H. Lehmann [165]. Figure 2.17: Non-destructive imaging of an Indonesian dagger sheath, illustrating how neutrons mitigate the obscuring effects of the out metal cover on images of the inner wood parts. Top left: A photograph of the dagger and the sheath, which has an outer metal cover (containing silver) and an inner wooden structure? Topugdamental and nonsticle (rphygigs) image. Bottom left and right: 3D renderings of neutron and Say Bomography data, respectively. Courtesy of E.H. Lehmann [165].

DRIFT TUBE LINAC

• All the five tanks are in the tunne

SPOKE LINAC

CRYOMODULE INSTALLATION COMPLETE

MEDIUM BETA LINAC

CRYOMODULE INSTALLATION ALMOST COMPLETE

KLYSTRON GALLERY

High voltage moderators, RF, RFDS and Controls

M. Eshraqi

TARGET, INSTRUMENT HALL

ESSnuSB

Ulrika Hammarlund (2020-2022)

No. of Concession, Name

mi-

2024 Jan 31

M. Eshraqi

ESSnuSB

LUND TO GARPENBERG VIA ZINKGRUVAN

ESSnuSB has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777419

M. Eshraqi

ESSnuSB

TOP LEVEL PARAMETERS

M. Eshraqi

ESSnuSB

ESSnuSB beam:	
Energy	2.5 GeV
Current	62 mA (50 mA
Repetition rate	14 Hz (x 4)
Pulse length	<3.5 ms
Losses	<iw m<="" td=""></iw>
lons	H-

Frank Gerigk and Eric Montesinos, CERN-ADD-NOTE-2016-0050

ESSNUSB LAYOUT

M. Eshraqi

ESSnuSB

THE PHENOMENA BETWEEN PARTICLES known

M. Eshraqi

H-TRANSPORT AND LOSSES

M. Eshraqi

ESSnuSB

PULSING IN THE LINAC, RING AND TARGET

M. Eshraqi

• Possibility of merging the two beams at 70 Hz

- Bending radius: 400 mm
 - pole gap: 100 mm
- A coil with 100 turns
 - ▶ Inductance: 17 mH
 - possible to switch at 70 Hz
- Power supply:
 - Current: 80 A
 - Voltage: I70 V

Håkan Danared, Björn Gålnander

MODULATOR

- Two different power upgrades for the modulators have been studied:
 - Using the SML modulators of ESS and upgrading the capacitor chargers
 - Using the SML modulators of ESS and adding pulse transformers for the H- beam

Scenario	Solution	Eta	Investme nt cost [M€]	Electricity cost per year [M€/y]	Increased system footprint [m²]	Total system height [m]	H ⁻ pulse rise time [µs]
А	SML upgr.	0.82	3.4	14.6	0	3.1	< 120
В	SML upgr.	> 0.80	3.4	14.8	0	3.1	< 80
	SML + PT	> 0.80	26.3	14.8	< 2.5 x 1.5	2.4	60-120
С	SML upgr.	> 0.71	3.4	16.7	0	3.1	< 170
	SML + PT	> 0.72	26.6	16.5	< 2.5 x 1.5	2.4	50-120
Baseline	SML	0.82	N/A	7.30	N/A	2.6	N/A

Max Collins and Carlos Martins

SUMMARY

- **The ESS project** has seen good progress, with RFQ beam commissioning completed
- **ESSnuSB** received funding to study the feasibility of ESS linac upgrade from 5 MW to 10 MW to deliver 1E23 p.o.t/yr for neutrino oscillation studies

• Linac upgrade

- The ESS linac lattice is capable of accelerating and transporting the H- beam with minimal stripping losses, such that the total losses of p and H- remain within I W/m
- H-loss phenomena have been studied, and the transfer line to ring designed to respect the loss limits
- The ESS's stacked multi-layer modulator has the capability to be upgraded for the ESSnuSB

THANK YOU!

