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Abstract

In this paper we study non-standard interactions mediated by a scalar field (SNSI) in the
context of ESSnuSB experiment. In particular we study the capability of ESSnuSB to put
bounds on the SNSI parameters and also study the impact of SNSI in the measurement of
the leptonic CP phase δCP. Existence of SNSI modifies the neutrino mass matrix and this
modification can be expressed in terms of three diagonal real parameters (ηee, ηµµ and ηττ )
and three off-diagonal complex parameters (ηeµ, ηeτ and ηµτ ). Our study shows that the upper
bounds on the parameters ηµµ and ηττ depend upon how ∆m2

31 is minimized in the theory.
However, this is not the case when one tries to measure the impact of SNSI on δCP. Further,
we show that the CP sensitivity of ESSnuSB can be completely lost for certain values of ηee
and ηµτ for which the appearance channel probability becomes independent of δCP.

1. Introduction

In the standard three flavour model, the quantum mechanical interference phenomenon of
neutrino oscillations can be described by three mixing angles: θ13, θ23, θ13, two mass squared
differences: ∆m2

21, ∆m2
31 and the Dirac type CP phase δCP. Among these parameters, the

true nature of δCP is yet to be understood [1]. The currently running experiment T2K prefers
a CP violating value of δCP whereas the data from the NOνA experiment is consistent with
a CP conserving value of this parameter [2]. Therefore, the aim of the next degeneration
experiments will be to measure this parameter with significant precision. ESSnuSB [3] is
an upcoming accelerator based neutrino oscillation experiment which aims to measure δCP

by measuring the second oscillation maximum. Recently, the feasibility study of ESSnuSB
was published in the conceptual design report (CDR) [4]. The proposal is to double the
repetition rate and compress the beam pulses of the European Spallation Source (ESS) [5] to
produce a 5 MW proton beam for neutrino production. The neutrinos produced in the ESS
will be detected at a distance of 360 km using a megaton-scale underground water Cherenkov
neutrino detector. The CDR reports the required upgrades of the ESS linac, the design of
the target station, the optimization of the near and far detectors and the expected sensitivity
to δCP. Additionally, there is also a proposal [6] to build a low energy muon storage ring
(LEnuSTORM) similar to the nuSTORM [7] project and to build a a low energy monitored
neutrino beam line (LEMNB), inspired by the ENUBET project [8].

The ESSnuSB experiment provides us with an opportunity to study various new physics
scenarios beyond the standard three flavour model. One of such scenarios is the non-standard
interactions (NSI). NSI can be mediated either by a vector field or a scalar field. NSI mediated
by a vector field can be either charged current (CC) in nature which affects the neutrino
interactions during their production and detection or it can also be neutral current (NC) in
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nature affecting the neutrino propagation. In the context of ESSnuSB, CC NSI has been
studied in Ref. [9], whereas NC NSI in ESSnuSB has been studied in Ref. [10]. However, it
should be noted that, as the ESSnuSB is not very sensitive to matter effects, the changes in the
neutrino oscillation probability due to NC NSI is negligible. This is because the presence of
NC NSI alters the matter potential of the Hamiltonian. In this paper we will study the effect
of a different kind of NSI, which is mediated by a scalar field i.e., SNSI in the context of the
ESSnuSB experiment. In the presence of SNSI, the Lagrangian is extended by a Yukawa like
term and therefore its effect in the neutrino oscillation Hamiltonian appears as a correction
to the neutrino mass. This new contribution to the neutrino mass term can be parameterized
by ηαβ . Our aim in this work will be to study the capability of ESSnuSB to constrain the
parameters of SNSI and to see how the δCP sensitivity is affected if SNSI exists in Nature.
Recently, in Ref. [11], the sensitivity of ESSnuSB to the SNSI was studied for ηee. In that
article, the authors showed how the upper bound of ηee depends upon θ23 and ∆m2

31. They
found that the standard three flavour scenario and the SNSI scenario can be distinguished at
3σ if ηee is greater than 0.045 for the 360 km baseline of ESSnuSB. In our study we extend
the analysis for all six SNSI parameters (3 real and 3 complex). Our results show that the
upper bounds on the SNSI parameters ηµµ and ηττ depend upon how the χ2 is minimized
with respect to the parameter ∆m2

31. While studying the effect of SNSI on the measurement
of δCP, we find that for some values of the SNSI parameters ηee and ηµτ , the appearance
channel probability becomes independent of δCP and hence the δCP sensitivity is completely
lost. Regarding the study of SNSI for other experiments, we refer to Refs. [11–21].

The article is organized as follows. In the next section, we will provide the theoretical
background of the SNSI. In Sec. 3 we will provide the description of the configuration of the
ESSnuSB experiment which we use in our calculations. In Sec. 4 we present our results. In
the beginning of this section, we will provide the details of our simulation and then we divide
it in two parts. In the first part, we will study the capability of ESSnuSB to put bounds
on the SNSI parameters and in the second part, we will study the impact of SNSI in the
measurement of δCP for ESSnuSB. Finally in Sec. 5 we will summarize our main findings and
give our concluding remarks.

2. Non-standard interactions mediated by scalar field

The effective Lagrangian in the presence of SNSI can be written as

Leff =
∑
f,α,β

yfyαβ
m2

ϕ

(ν̄ανβ)(ff̄), (2.1)

where y’s are the Yukawa couplings and mϕ is the mass of the scalar mediator. f is the
flavour index of the fermions and α and β are the flavour index of the neutrinos. Therefore,
the correction to the neutrino mass matrix is

δM =

∑
f Nfyfyαβ

m2
ϕ

, (2.2)

where Nf is the density of the fermion in matter. One convenient way to parameterize δM
can be

δM =
√
|∆m2

31|

ηee ηeµ ηeτ
ηµe ηµµ ηµτ
ητe ητµ ηττ ,

 (2.3)
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where we have chosen to scale the size of δM relative to
√
|∆m2

31| to make the parameters of
SNSI i.e., η dimensionless. Comparing Eq. 2.2 and 2.3, one can write

ηαβ =
1

m2
ϕ

√
|∆m2

31|

∑
f

Nfyfyαβ. (2.4)

We will consider δM to be Hermitian, hence, ηαα are real and ηαβ = η∗βα = |ηαβ|eiϕαβ with
α ̸= β are complex. Therefore, the number of real independent parameters are 9.

Now let us see how this δM modifies the Hamiltonian of neutrino oscillations. The Hamil-
tonian of neutrino oscillations in the flavour basis and in presence of scalar NSI can be written
as

H = Eν +
MM †

2Eν
+ V, (2.5)

where Eν is the energy of the neutrinos and V = diag(
√
2GFNe, 0, 0) is the standard matter

potential, where GF is the Fermi constant and Ne is the electron number density. In this case
the term M becomes

M = U diag(m1,m2,m3) U
† + δM (2.6)

= U diag

(
m1,

√
m2

1 +∆m2
21,

√
m2

1 +∆m2
31

)
U † + δM, (2.7)

where in Eq. 2.7 we have assumed normal ordering of the neutrino masses i.e., m3 > m2 > m1.
In the above equation U is the PMNS matrix. In our calculation we used the standard
parametrization of U as given in [22]. Neutrino oscillation probabilities in presence of SNSI
can be calculated by diagonalizing Eq. 2.5. Here it is interesting to note that, for SNSI, the
neutrino oscillation probabilities will depend on the absolute neutrino mass m1.

3. Experimental and Simulation Details

We have used the GLoBES [23, 24] software for our numerical calculations. In order to
calculate the neutrino oscillation probabilities in the presence of SNSI, we have modified the
probability engine in GLoBES. For ESSnuSB we have used the exact configuration that is
used to generate the results in the CDR [4]. A water Cherenkov detector of fiducial volume
538 kt located at a distance 360 km from the neutrino source has been considered. A value of
2.7× 1023 protons on target per year with a beam power of 5 MW, and proton kinetic energy
of 2.5 GeV has been assumed for the neutrino beam production. The optimised fluxes from
the genetic algorithm have been implemented, together with the event selection obtained from
the full Monte-Carlo simulations in the form of migration matrices. The events are distributed
in 50 bins between 0 to 2.5 GeV of the reconstructed energy. Both the appearance channel
(νµ → νe) and disappearance channel (νµ → νµ) for signal events have been analysed. The
relevant background channels have been implemented. Finally, a total run-time of 10 years
(divided into 5 years of neutrino beam and 5 years of antineutrino beam) has been assumed.
For systematics, we have considered an overall normalization error of 5% for signal and 10%
for backgrounds for both appearance and disappearance channels. We did not consider any
systematic errors corresponding to shape.
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4. Results

For the estimation of the sensitivity, we use the Poisson log-likelihood and assume that it
is χ2-distributed:

χ2
stat = 2

n∑
i=1

[
N test

i −N true
i −N true

i log

(
N test

i

N true
i

)]
, (4.1)

where N test and N true are the number of events in the test and true spectra respectively,
and n is the number of energy bins. The systematic error is incorporated by the method of
pull [25, 26]. The values of the oscillation parameters are taken from NuFit 5.2 and are listed
in Tab. 1.

Parameter best-fit ±1σ 3σ range
sin2 θ12 0.303± 0.012
θ12 0.583± 0.013 0.546 → 0.624

sin2 θ13 0.02225± 0.00059
θ13 0.1497± 0.0019 0.1436 → 0.1555

sin2 θ23 0.451± 0.019
θ23 0.737± 0.019 0.693 → 0.890

δCP 4.05± 0.63 2.51 → 6.11
∆m2

12 (7.41± 0.21)× 10−5 eV2 (6.82 → 8.03)× 10−5 eV2

∆m2
13 (2.507± 0.027)× 10−3 eV2 (2.427 → 2.590)× 10−3 eV2

Table 1: Oscillation parameters provided by NuFIT 5.2 (2022) (with SK atmospheric data).

While calculating the χ2, the true values of the oscillation parameters are always kept at
their best-fit values as shown in Tab. 1. The relevant oscillation parameters are minimized
in the test using the current uncertainties associated with these parameters. We will present
all our results for the normal ordering of the neutrino masses with m1 = 7.42 × 10−5 eV2.
Further, we will consider one SNSI parameter at a time throughout our calculation.

4.1. Bounds on the SNSI parameters
Let us first discuss the capability of ESSnuSB to put bounds on the SNSI parameters.

We will do this by taking the standard three flavour scenario in the true spectrum of the χ2

and the SNSI scenario in the test spectrum of the χ2. And then we will show the results
as 1-D χ2 for the diagonal SNSI parameters (i.e., χ2 vs ηαα plots) and as 2-D contours for
the off-diagonal SNSI parameters (ηαβ vs ϕαβ plots with α ̸= β). Before we present these
results, it is important to understand how the bounds on the NSI parameters depend on the
oscillation parameters. In our analysis, we have found that the parameter ∆m2

31 has a very
non-trivial role when putting the bounds on the SNSI parameters. In Fig. 1, we have taken
the standard scenario in the true spectrum and SNSI in the test spectrum and plotted the 2-D
contours in the η vs ∆m2

31 plane for 1σ C.L (solid contours) and 3σ C.L (dashed contours).
In generating these plots, all the parameters that are not shown are minimized (except the
phases), using their 1σ error as prior. The phases i.e., δCP for all six panels and ϕ for the
off-diagonal parameters are minimized without any prior i.e., flat prior. The top row is for the
diagonal SNSI parameters with left/middle/right panels corresponding to ηee/ηµµ/ηττ whereas
the bottom row is for the off-diagonal parameters with left/middle/right panels corresponding
to ηeµ/ηeτ/ηµτ . In these panels the y-axis corresponds to the current 3σ allowed values of
∆m2

31 according to Nufit 5.2. The region enclosed by the horizontal black dashed line shows
the allowed values of ∆m2

31 at 1σ C.L according to Nufit 5.2.
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Figure 1: 2-D contours in the η (test) - ∆m2
31 (test) plane. In these panels 1σ (3σ) contours

corresponds to χ2 = 2.30 (11.83). See text for details.

From the panels we see that for the SNSI parameters ηee, ηeµ and ηeτ , one obtains closed
contours at both 1σ and 3σ i.e. 3σ range of ∆m2

31. This implies that for these parameters
the standard three flavour scenario can be fitted with SNSI with a value of ∆m2

31 lying within
its current 3σ allowed values. However, this is not the case for the parameters ηµµ, ηττ and
ηµτ . Here we notice that the contours at the 3σ C.L. reach beyond the current 3σ allowed
values of ∆m2

31. This means that for these parameters, the standard scenario can be fitted
with SNSI with a value of ∆m2

31 lying beyond its current 3σ allowed values. This brings us to
an important conclusion that the bounds of the SNSI parameters ηµµ, ηττ and ηµτ can depend
upon how ∆m2

31 is minimized during the fit. If one minimizes ∆m2
31 within its 3σ values then

we will obtain stronger bounds as compared to the case when we minimize this parameter
randomly without any prior. As in the later case, the χ2 minimum can occur with a value of
∆m2

31 lying outside its current 3σ allowed values. This can be seen from Fig. 2.
In Fig. 2, we have shown the capability of ESSnuSB to put bounds on the SNSI parameters.

The top row shows the case when ∆m2
31 is minimized randomly without any prior i.e., flat

prior and the bottom row reflects the case when ∆m2
31 is minimized within its 3σ allowed

values by the method of systlllematic sampling. By systematic sampling we mean that the
χ2 is calculated by varying ∆m2

31 in equidistant steps from its 3σ minimum value to its 3σ
maximum value and then we select the χ2 minimum. In each row, the left panels are for the
diagonal parameters with red/blue/green curves corresponding to ηee/ηµµ/ηττ whereas the
right panels are for the off-diagonal parameters with red/blue/green curves corresponding to
ηeµ/ηeτ/ηµτ . In the left column, the black dashed dotted horizontal line shows the benchmark
sensitivity of 3σ C.L. whereas the right column, the contours are drawn at 3σ C.L.

From the panels we see that the curves for ηee, ηeµ and ηeτ are very similar in the top
row and in the bottom row i.e., the sensitivity is very similar between the cases when ∆m2

31

varies randomly without any prior vs when ∆m2
31 is minimized within its 3σ range. This is

because, for these parameters, in both cases the χ2 minimum appears with ∆m2
31 lying within

its current 3σ values. However, this is not the case for the SNSI parameters ηµµ and ηττ .
For these parameters, the upper bounds obtained from the top row are weaker as compared
to the bounds that are obtained from the bottom row. This is because in the bottom row,
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Figure 2: Capability of ESSNuSB to put bounds on the SNSI parameters. Top row: ∆m2
31

is minimized randomly without any prior. Bottom row: ∆m2
31 is minimized within its current

3σ values. See text for details.

the χ2 minimum is forced to occur within the current 3σ values of ∆m2
31 whereas in the top

row, where the ∆m2
31 has been kept free, the χ2 minimum occurs at a value of ∆m2

31 which
lies outside its current 3σ values. For ηµτ , we see that the upper bounds for the both cases
are similar though the standard scenario can be fitted with SNSI with a value of ∆m2

31 lying
beyond its current 3σ allowed values. We have listed the 3σ bounds obtained for the SNSI
parameters in Tab. 2 for both the cases.

SNSI ∆m2
31 free ∆m2

31 constrained
Param. 3σ range Phase 3σ range Phase

ηee −0.034 → 0.036 −0.036 → 0.036
ηµµ −0.095 → 0.154 −0.051 → 0.051
ηττ −0.1055 → 0.295 −0.039 → 0.042
|ηeµ| 0.000 → 0.135 ϕeµ = 122.4◦ 0.000 → 0.135 ϕeµ = 108◦

|ηeτ | 0.000 → 0.194 ϕeτ = −43.2◦ 0.000 → 0.196 ϕeτ = −43.2◦

|ηµτ | 0.000 → 0.820 ϕµτ = −154.8◦ 0.000 → 0.828 ϕµτ = −158.4◦

Table 2: Upper bounds of the SNSI parameters at 3σ C.L. See text for detail. In this table,
3σ bounds for the diagonal (off-diagonal) SNSI parameters correspond to χ2 = 9 (11.83).

From Fig. 2, we see that for the off-diagonal parameters the upper bounds depend on the
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Figure 3: Appearance channel probabilities as a function of E for the three off-diagonal SNSI
parameters. The Standard curve is drawn with the true values of oscillation parameters which
are used to generate Fig.2. The SNSI curves are drawn with the value of oscillation parameter
where χ2 minimum comes in top row of Fig. 2.

values of the phases ϕ. For all three off-diagonal parameters the strongest bound corresponds
to ϕ = 0◦. For ηeµ the bound is weakest at ϕeµ = 90◦ whereas for ηeτ and ηµτ , the weakest
bound comes around ϕeµ = −90◦. To understand this we have plotted in Fig. 3 the appearance
channel probabilities i.e., Pµe for the neutrinos as a function of the energy for the 360 km
baseline. The left/middle/right panels are for ηeµ/ηeτ/ηµτ . In each panel, the standard three
flavour scenario is shown by the black solid curve. The values of the oscillation parameters
for this curve are the same as the true values which are used to generate Fig. 2. The red,
blue and green curves corresponds to the SNSI cases with ϕ = −90◦, 0◦ and 90◦ respectively.
The values of |η| are taken to be 0.1 for all cases. The SNSI curves are drawn for the values
of the oscillation parameters at which the χ2 minimum occurs for the case when the ∆m2 is
minimized freely i.e., the top row of Fig. 2. Therefore, the separation between the standard
curve and the SNSI curves reflects the sensitivity of the SNSI parameters at that value of ϕ. If
the separation between the standard curve and the SNSI curve for a given value of ϕ is large,
then this would imply a stronger bound on the SNSI parameter for that value of ϕ whereas
if the separation between the standard curve and SNSI curves are small, then we expect a
weaker bound for the value of ϕ. Further, as the flux x cross-section peaks around 0.35 GeV
for ESSnuSB, we will be interested in the separation between the standard curves and SNSI
curves at that value of E i.e., around the first oscillation minimum.

From the probability curves we see that for all three off-diagonal parameters, the black
curve and the blue curves are separated the most at the first oscillation minimum. For this
reason, we have observed that the strongest bound on the off-diagonal parameters comes at
ϕ = 0◦. For ηeµ, we see that the black curve and the green curve are the closest. This explains
why the sensitivity is weak at ϕeµ = 90◦. For ηeτ and ηµτ , we notice that the black curve is
closest to the red curve. This is why for these two parameters the weakest sensitivity comes
around the −90◦ value of the phases.

4.2. Impact of SNSI in the measurement of δCP

In this subsection, we will discuss the effect of SNSI on the δCP sensitivity of ESSnuSB
assuming SNSI exists in nature. This is done by taking SNSI in both true and test spectrum
of the χ2. Like earlier, first we checked the effect of different oscillation parameters when
one considers SNSI in both true and test spectrum of the χ2. Here we have found that when
SNSI is considered in both true and test, the χ2 minimum always appears within the current
3σ allowed values of all parameters. Therefore, the sensitivity does not differ in the different
cases depending upon how the different oscillation parameters are minimized.
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Figure 4: CP violation discovery sensitivity for δCP(true) = −90◦ as function of the SNSI
parameters. 5σ is at

√
χ2 = 5. See text for detail.

In Fig. 4, we have shown the CP violation (CPV) sensitivity for δCP(true) = −90◦ as a
function of the SNSI parameters. The CPV discovery sensitivity of an experiment is defined
by its capability to distinguish a value of δCP from non-CPV values of 0◦ and 180◦. The
top left panel is for the diagonal parameters whereas the other panels are for the off-diagonal
parameters. For the diagonal parameters, we have plotted the sensitivity as a function of η,
whereas for the off-diagonal parameters we have plotted the sensitivity as 2-D color map in
the |η| - ϕ plane. In the 2-D color maps, the color code shows the value of the CP violation
discovery χ2. For the diagonal parameters red/blue/green curves correspond to ηee/ηµµ/ηττ .
In this panel, the black dashed dotted horizontal line shows the benchmark sensitivity of 5σ.
In these panels, the SNSI parameters are fixed in the test as true.

Let us first discuss the sensitivity for the diagonal SNSI parameters. From the top left
panel we see that starting from ηαα = 0, as we decrease (increase) the value of ηαα, the
sensitivity decreases (increases) as compared to the sensitivity in the standard three flavour
scenario. However, the sensitivity eventually reaches a minimum (maximum) and thereafter
increases (decreases). Here we observe an interesting feature for ηee. For ηee, around -0.176
, the CPV sensitivity becomes almost zero. For the off-diagonal parameters we also see that
for some combinations of η and ϕ, the CPV sensitivity can become very small. In fact, for
(|ηµτ | = 0.18, ϕµτ = 12◦), CPV sensitivity completely vanishes. This will be more clear from
Fig. 5.

Next, let us discuss the effect of SNSI on the CP precision. In Fig. 5, we have plotted the
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Figure 5: CP precision sensitivity as function of the SNSI parameters. Here ∆δCP corresponds
to the 1σ error associated with δCP corresponding to χ2 = 1. See text for details.

1σ CP precision as a function of the SNSI parameters. The CP precision is defined as the error
associated with the measurement of δCP. The top left panel is for the diagonal parameters
whereas the other panels are for the off-diagonal parameters. For the diagonal parameters,
we have plotted the sensitivity as a function of η for δCP = 0◦ and −90◦ whereas for the
off-diagonal parameters we have plotted the sensitivity as 2-D color map in the |η| - ϕ plane.
Here the color code shows the 1σ error associated with the measurement of δCP = −90◦. For
the diagonal parameters red/blue/green curves correspond to ηee/ηµµ/ηττ . The solid (dashed)
lines are for δCP = −90◦ (0◦). In these panels, the SNSI parameters are fixed in the test as
true.

For the diagonal parameters we see that for the positive values of η, the sensitivity almost
remains constant whereas for the negative values of η, the sensitivity decreases as compared
to the sensitivity in the standard three flavour scenario. Here also we see that for ηee, around
-0.176, the sensitivity is completely lost. We also see a similar effect for the off-diagonal
parameters where the CP precision is very poor for some combination of η and ϕ. For example,
we can see that the CP precision sensitivity is completely lost for (|ηµτ | = 0.18, ϕµτ = 12◦)
(the yellow squares).

To understand why the CP sensitivity is completely lost for some values of the SNSI
parameters, in Fig. 6 we have plotted the appearance channel probability for ηee = −0.176.
In the left panel we have plotted the probability as a function of energy E for different values
of δCP and in the right panel we have plotted the probability as a function of δCP for different
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Figure 6: Appearance channel probability as a function of energy (left panel) and the same
as a function of δCP (right panel). See text for details.

values of E. In the left panel the red curves are for the standard three flavour case and the
blue is for SNSI case.

From the left panel we see that for ηee = −0.176, the curves for δCP = −90◦ and 0◦ are
exactly overlapping for all values of E whereas from the right panel we see that curves for
different E are almost flat with respect to different values of δCP. From this observation we
can conclude that for this particular value of ηee, the appearance channel probability becomes
independent of the δCP and therefore the CP sensitivity is completely lost. A similar conclusion
can be drawn about the loss of sensitivity for (|ηµτ | = 0.18, ϕµτ = 12◦). At this moment we
could not derive an analytical expression of the appearance channel probability to show these
explicitly1. We leave it as a future project.

5. Summary and Conclusion

In this paper we have studied the non-standard interaction mediated by a scalar field
(SNSI) in the context of ESSnuSB experiment. ESSnuSB is a future neutrino experiment
which aims towards an unprecedented precision measurement of the leptonic CP phase δCP by
studying the phenomenon of neutrino oscillation at the second oscillation maximum. Apart
from the oscillation in the standard three flavour scenario, ESSnuSB provides us with an
opportunity to study various new physics scenarios. One of them is SNSI. In the presence
of SNSI, the neutrino mass matrix gets modified. This modification can be parameterized
in terms of three real diagonal parameters and three complex off-diagonal parameters. In
this work we studied the capability of the ESSnuSB experiment to put the limit on the SNSI
parameters as well as the impact of SNSI in the measurement of δCP. We also looked at the
impact of SNSI to the CP violation sensitivity of ESSnuSB.

To estimate the upper bounds on the SNSI parameters in the context of ESSnuSB, we
took the standard three flavour model in the true spectrum of the χ2 and SNSI in the test
spectrum of the χ2. In our calculation we found that the parameter ∆m2

31 plays a non-trivial
role. The upper bounds on the parameters ηµµ, ηττ and ηµτ can depend upon how ∆m2

31

is minimized in the theory. We showed that this happens because for these parameters, the

1An approximate analytical expression of the appearance channel probability for SNSI is derived in Ref. [14].
However, this expression is independent of the ηee and ηµτ terms.
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standard scenario can be fitted with SNSI with a value of ∆m2
31 lying outside its current 3σ

allowed range. Therefore, if one minimizes this parameter within its current 3σ range then one
will get a stronger bound on these parameters as compared to the case when one minimizes
these parameter without any constraint. However, this is not the case with the other SNSI
parameters i.e, ηee, ηeµ and ηeτ . For them, the standard scenario can be always fitted with
SNSI with a value of ∆m2

31 lying within its current 3σ values. In our analysis we also find that
the upper bounds of ηµτ does not depend upon the minimization method of ∆m2

31 though the
standard scenario can be fitted with SNSI with a value of ∆m2

31 lying beyond its current 3σ
allowed values. We presented the sensitivity of ESSnuSB to ηαβ with and without the ∆m2

31

constraints.
Next we studied the impact of SNSI in the measurement of δCP by taking SNSI in both

true and test spectrum of the χ2. Here we found that when one considers SNSI in both true
and test spectrum of the χ2, the results do not depend upon how the oscillation parameters
are minimized in the test. In our study we found that the CP sensitivity in terms of both CP
violation and CP precision can either increase or decrease as compared to the sensitivity in the
standard three flavour case depending upon the values of the SNSI parameters. Interestingly,
we found that for some values of the SNSI parameters, the CP sensitivity can become extremely
poor. In particular, for ηee = −0.176 and (|ηµτ | = 0.18, ϕµτ = 12◦) the appearance channel
probability becomes independent of δCP and hence the CP sensitivity of ESSnuSB is completely
lost.

In conclusion, the presence of SNSI can alter our understanding of neutrino oscillation
in the three flavour completely. It can affect the measurement of ∆m2

31 and δCP in a very
significant manner. Therefore it is very important to analyze the data from neutrino oscillation
experiments to look for existence of SNSI. The ESSnuSB experiment provides a promising
platform for studying SNSI.
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