• CORDIS Link / ESSnuSB+
  • CORDIS Link / ESSnuSB
  • Neutrino Conferences

ESSnuSB / ESSnuSB+

Funded by the European Union

  • Latest news
  • About us
  • ESSnuSB+ partnership
  • ESSnuSB+ Organisation
  • ESSnuSB+ at international events
  • Upcoming meetings
  • Twitter
  • ESSnuSB+ in media
  • Job offers
  • Glossary
  • Documents
  • ESSnuSB 2018-2022
    • ESSnuSB Organisation
      • Governing Board
      • Management Team
      • Executive Committee
      • ESSnuSB Dissemination & Exploitation Board
      • International Advisory Panel
      • Co-coordinators
    • ESSnuSB Work Packages
      • Definition
      • WP1 – Management Team
      • WP2 – Linac upgrade
      • WP3 – Accumulator
      • WP4 – Target Station
      • WP5 – Detector performance
      • WP6 – Physics Reach
    • ESSnuSB participants
      • On the map
      • People
      • Institutes and Organisations
    • Publications, Talks & Posters
      • Publications
      • Talks
      • Posters
    • The ESSnuSB Gazette
    • Past events
  • EuroNuNet
  • Neutrino Conferences
  • Outreach events
  • Recent publications
  • Contact Page

About us / ESSnuSB

ESSnuSB is a European Design Study project financed by the European Commission. It is composed of 15 participating institutes/organisations from  11 countries.

The project was initiated by the COST networking Project titled: “EuroNuNet“. The activities of both projects, ESSnuSB and EuroNuNet are tightly intertwined. You can see the correspondance of activities between both projects here.

Background:
After the Big Bang, matter and antimatter were produced in equal quantities through materialization of the huge energy released. Observations show that today, however, there is a nearly total absence of antimatter in the Universe. The occurrence of Charge-Parity Violation (CPV) is a necessary condition for an explanation of this absence. CPV has already been observed in the quark sector but the measured amount is insufficient to explain the observed matterantimatter asymmetry. Recent neutrino oscillation measurements indicate that the discovery of neutrino CPV becomes an important candidate to explain the observed matter dominance in the Universe. The goal of ESSnuSB project is to discover and measure neutrino CPV with unprecedented sensitivity. The ESSnuSB concept takes advantage of two outstanding opportunities:

  1. The first is the construction in Europe of the European Spallation Source, ESS, the world’s most intense proton source, with a beam power almost one order of magnitude higher than any other accelerator.
  2. The second is the recently measured unexpectedly large value of the oscillation mixing angle θ13. The latter fact implies that to obtain maximum sensitivity, the neutrino detector shall be placed at the second neutrino oscillation maximum, not at the first as implemented by the other proposed experiments. The Garpenberg mine in Sweden, in which it is proposed to install the underground neutrino detector, is situated at a distance from ESS that corresponds to the second maximum.

The goal of the ESSνSB H2020 Design Study is to organize European physicists and accelerator engineers in co-operation with the ESS Laboratory and the Garpenberg Mining Company to study and produce a Conceptual Design Report for the ESSnuSB project.


ESSnuSB looking for the answer.

https://youtu.be/qAnvft0nAlg

ESSnuSB Design Study Project

https://youtu.be/PwzNzLQh-Dw
  • Cukurova University
  • DEMOKRITOS NCSR
  • ESS Bilbao
  • CERN
  • Universität Hamburg UHH
  • Lulea University of Technology
  • ESS Lund
  • Lunds Universitet
  • Università di Milano Bicocca
  • Nagoya University
  • Università di Padova
  • INFN - Italy
  • Università di Roma Tre
  • Sofia University
  • KTH Stockholm
  • IPHC Strasbourg
  • CNRS - Strasbourg
  • Université de Strasbourg
  • AUTH - Thessaloniki
  • Uppsala Universitet
  • RBI - Ruder Boskovic Institute

ESSnuSB+ Work Packages 2023-2026

  • WP1 Management Team
  • WP2 Engineering & Infrastructure
  • WP3 Target Station & pion extraction
  • WP4 Low Energy nuSTORM
  • WP5 Detectors and physics reach
  • WP6 Low Energy Monitored Neutrino Beam

ESSnuSB Work Packages 2018-

  • WP1 – Management
  • WP2 – Linac upgrade
  • WP3 – Accumulator
  • WP4 – Target Station
  • WP5 – Detector performance
  • WP6 – Physics Reach

ESSNUSB+ CALENDAR

May 2025
MTWTFSS
    1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31  
« Apr   Jun »

Planned meetings

Links

  • CORDIS Link / ESSnuSB+
  • CORDIS Link / ESSnuSB
  • Neutrino Conferences
Copyright © 2025. ESSnuSB / ESSnuSB+
Powered By WordPress and Meritorious